26.03.2013 Views

MIT Encyclopedia of the Cognitive Sciences - Cryptome

MIT Encyclopedia of the Cognitive Sciences - Cryptome

MIT Encyclopedia of the Cognitive Sciences - Cryptome

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

58 Autism<br />

See also AUDITION; AUDITORY ATTENTION; CONDITION-<br />

ING AND THE BRAIN; PHONOLOGY, NEURAL BASIS OF;<br />

SPEECH PERCEPTION<br />

—Gregg Recanzone<br />

References<br />

Bakin, J. S., and N. M. Weinberger. (1990). Classical conditioning<br />

induces CS-specific receptive field plasticity in <strong>the</strong> auditory<br />

cortex <strong>of</strong> <strong>the</strong> guinea pig. Brain Res. 536: 271–286.<br />

Diamond, D. M., and N. M. Weinberger. (1986). Classical conditioning<br />

rapidly induces specific changes in frequency receptive<br />

fields <strong>of</strong> single neurons in secondary and ventral ectosylvian<br />

auditory cortical fields. Brain Res. 372: 357–360.<br />

Knudsen, E. I., and M. S. Brainard. (1991). Visual instruction <strong>of</strong><br />

<strong>the</strong> neural map <strong>of</strong> auditory space in <strong>the</strong> developing optic tectum.<br />

Science 253: 85–87.<br />

Knudsen, E. I., and P. F. Knudsen. (1989). Vision calibrates sound<br />

localization in developing barn owls. J. Neurosci. 9: 3306–3313.<br />

Kuhl, P. K. (1993). Developmental speech perception: implications<br />

for models <strong>of</strong> language impairment. Annal New York Acad. Sci.<br />

682: 248–263.<br />

McKenna, T. M., J. H. Ashe, and N. M. Weinberger. (1989). Cholinergic<br />

modulation <strong>of</strong> frequency receptive fields in auditory<br />

cortex: 1. Frequency-specific effects <strong>of</strong> muscarinic agonists.<br />

Synapse 4: 30–43.<br />

Merzenich, M. M., W. M. Jenkins, P. Johnston, C. Schreiner, S. L.<br />

Miller, and P. Tallal. (1996). Temporal processing deficits <strong>of</strong><br />

language-learning impaired children ameliorated by training.<br />

Science 271: 77–81.<br />

Me<strong>the</strong>rate, R., and N. M. Weinberger. (1990). Cholinergic modulation<br />

<strong>of</strong> responses to single tones produces tone-specific receptive<br />

field alterations in cat auditory cortex. Synapse 6: 133–145.<br />

Rajan, R., D. R. Irvine, L. Z. Wise, and P. Heil. (1993). Effect <strong>of</strong><br />

unilateral partial cochlear lesions in adult cats on <strong>the</strong> representation<br />

<strong>of</strong> lesioned and unlesioned cochleas in primary auditory<br />

cortex. J. Comp. Neurol. 338: 17–49.<br />

Recanzone, G. H., C. E. Schreiner, and M. M. Merzenich. (1993).<br />

Plasticity in <strong>the</strong> frequency representation <strong>of</strong> primary auditory<br />

cortex following discrimination training in adult owl monkeys.<br />

Journal <strong>of</strong> Neuroscience 13: 87–103.<br />

Robertson, D., and D. R. Irvine. (1989). Plasticity <strong>of</strong> frequency<br />

organization in auditory cortex <strong>of</strong> guinea pigs with partial unilateral<br />

deafness. J. Comp. Neurol. 282: 456–471.<br />

Ryugo, D. K., and N. M. Weinberger. (1978). Differential plasticity<br />

<strong>of</strong> morphologically distinct neuron populations in <strong>the</strong> medical<br />

geniculate body <strong>of</strong> <strong>the</strong> cat during classical conditioning.<br />

Behav. Biol. 22: 275–301.<br />

Tallal, P., S. L. Miller, G. Bedi, G. Byma, X. Wang, S. S. Nagarajan,<br />

C. Schreiner, W. M. Jenkins, and M. M. Merzenich. (1996).<br />

Language comprehension in language-learning impaired children<br />

improved with acoustically modified speech. Science 271:<br />

81–84.<br />

Tallal, P., and M. Piercy. (1973). Defects <strong>of</strong> non-verbal auditory<br />

perception in children with developmental aphasia. Nature 241:<br />

468–469.<br />

Wright, B. A., D. V. Buonomano, H. W. Mahncke, and M. M.<br />

Merzenich. (1997). Learning and generalization <strong>of</strong> auditory<br />

temporal-interval discrimination in humans. J. Neurosci. 17:<br />

3956–3963.<br />

Fur<strong>the</strong>r Readings<br />

Knudsen, E. I. (1984). Syn<strong>the</strong>sis <strong>of</strong> a neural map <strong>of</strong> auditory space<br />

in <strong>the</strong> owl. In G. M. Edelman, W. M. Cowan, and W. E. Gall,<br />

Eds., Dynamic Aspects <strong>of</strong> Neocortical Function. New York:<br />

Wiley, pp. 375–396.<br />

Knudsen, E. I., and M. S. Brainard. (1995). Creating a unified representation<br />

<strong>of</strong> visual and auditory space in <strong>the</strong> brain. Ann. Rev.<br />

Neurosci. 18: 19–43.<br />

Merzenich, M. M., C. Schreiner, W. Jenkins, and X. Wang. (1993).<br />

Neural mechanisms underlying temporal integration, segmentation,<br />

and input sequence representation: some implications for<br />

<strong>the</strong> origin <strong>of</strong> learning disabilities. Annal New York Acad. Sci.<br />

682: 1–22.<br />

Neville, H. J., S. A. C<strong>of</strong>fey, D. S. Lawson, A. Fischer, K. Emmorey,<br />

and U. Bellugi. (1997). Neural systems mediating American<br />

sign language: Effects <strong>of</strong> sensory experience and age <strong>of</strong><br />

acquisition. Brain and Language 57: 285–308.<br />

Recanzone, G. H. (1993). Dynamic changes in <strong>the</strong> functional organization<br />

<strong>of</strong> <strong>the</strong> cerebral cortex are correlated with changes in<br />

psychophysically measured perceptual acuity. Biomed. Res. 14,<br />

Suppl. 4: 61–69.<br />

Weinberger, N. M. (1995). Dynamic regulation <strong>of</strong> receptive fields<br />

and maps in <strong>the</strong> adult sensory cortex. Ann. Rev. Neurosci. 18:<br />

129–158.<br />

Weinberger, N. M., J. H. Ashe, R. Me<strong>the</strong>rate, T. M. McKenna, D.<br />

M. Diamond, and J. S. Bakin. (1990). Retuning auditory cortex<br />

by learning: A preliminary model <strong>of</strong> receptive field plasticity.<br />

Concepts Neurosci. 1: 91–131.<br />

Autism<br />

A developmental disorder <strong>of</strong> <strong>the</strong> brain, autism exists from<br />

birth and persists throughout life. The etiology <strong>of</strong> <strong>the</strong> disorder<br />

is still unknown, but is believed to be largely genetic,<br />

while different organic factors have been implicated in a<br />

substantial proportion <strong>of</strong> cases (for reviews see Ciaranello<br />

and Ciaranello 1995; Bailey, Phillips, and Rutter 1996).<br />

Autism was identified and labeled by Kanner (1943) and<br />

Asperger (1944).<br />

The diagnosis <strong>of</strong> autism is based on behavioral criteria.<br />

The chief criteria as set out in ICD-10 (WHO 1992) and in<br />

DSM-IV (APA 1994) include: abnormalities <strong>of</strong> social interaction,<br />

abnormalities <strong>of</strong> verbal and nonverbal communication,<br />

and a restricted repertoire <strong>of</strong> interests and activities.<br />

Behavior suggestive <strong>of</strong> <strong>the</strong>se impairments can already be<br />

discerned in infancy. A recent screening instrument, based<br />

on a cognitive account <strong>of</strong> autism, appears to be remarkably<br />

successful at eighteen months, involving failure <strong>of</strong> gaze<br />

monitoring, protodeclarative pointing, and pretend play<br />

(Baron-Cohen et al. 1996). These appear to be <strong>the</strong> first clear<br />

behavioral manifestations <strong>of</strong> <strong>the</strong> disorder. Contrary to popular<br />

belief, failure <strong>of</strong> bonding or attachment is not a distinguishing<br />

characteristic <strong>of</strong> autism.<br />

The autistic spectrum refers to <strong>the</strong> wide individual variation<br />

<strong>of</strong> symptoms from mild to severe. Behavior not only<br />

varies with age and ability, but is also modified by a multitude<br />

<strong>of</strong> environmental factors. For this reason, one <strong>of</strong> <strong>the</strong><br />

major problems with behaviorally defined developmental<br />

disorders is how to identify primary, associated, and secondary<br />

features. Three highly correlated features, namely characteristic<br />

impairments in socialization, communication, and<br />

imagination, were identified in a geographically defined<br />

population study (Wing and Gould 1979). These impairments<br />

appear to persist in development even though <strong>the</strong>ir

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!