26.03.2013 Views

MIT Encyclopedia of the Cognitive Sciences - Cryptome

MIT Encyclopedia of the Cognitive Sciences - Cryptome

MIT Encyclopedia of the Cognitive Sciences - Cryptome

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

ility that an object is recognized by comparing it to<br />

multiple, viewpoint-dependent representations in long-term<br />

memory, ra<strong>the</strong>r than to a single, viewpoint-independent representation.<br />

Relatively little is known about <strong>the</strong> physiological mechanisms<br />

underlying shape perception, but researchers have<br />

located neurons in <strong>the</strong> inferotemporal cortex (IT) that<br />

respond better to some shapes than to o<strong>the</strong>rs, even when<br />

<strong>the</strong>se shapes are not identified with specific previously<br />

learned objects. Whereas <strong>the</strong> primary VISUAL CORTEX initially<br />

codes basic features such as orientation, size, and<br />

color, area IT codes much more complex features such as<br />

particular shapes, or combinations <strong>of</strong> shapes and colors<br />

(Tanaka 1993). Neurons in area IT also have similar shape<br />

selectivity regardless <strong>of</strong> <strong>the</strong> cue that defines <strong>the</strong> shape (e.g.,<br />

luminance-, texture-, or motion-defined shapes; Sary et al.<br />

1995), <strong>the</strong> size and position <strong>of</strong> <strong>the</strong> shape (Ito et al. 1995;<br />

Logo<strong>the</strong>tis, Pauls, and Poggio 1995), or <strong>the</strong> presence or<br />

absence <strong>of</strong> partially occluding contours (Kovacs, Vogels,<br />

and Orban 1995). These recent discoveries suggest that area<br />

IT plays a significant role in shape constancy and recognition,<br />

but o<strong>the</strong>r cortical areas may be involved in <strong>the</strong> use <strong>of</strong><br />

shape to guide <strong>the</strong> manipulation <strong>of</strong> objects (Goodale and<br />

Milner 1992; see also VISUAL PROCESSING STREAMS). Additional<br />

physiological and psychophysical research in <strong>the</strong> next<br />

few years undoubtedly will increase our understanding <strong>of</strong><br />

<strong>the</strong> physiological processes underlying shape perception.<br />

See also ILLUSIONS; PICTORIAL ART AND VISION; SPA-<br />

TIAL PERCEPTION; TOP-DOWN PROCESSING IN VISION<br />

—Allison B. Sekuler and Patrick J. Bennett<br />

References<br />

Attneave, F. (1954). Some informational aspects <strong>of</strong> visual perception.<br />

Psychological Review 61: 183–193.<br />

Biederman, I., and G. Ju. (1988). Surface versus edge-based<br />

determinants <strong>of</strong> visual recognition. <strong>Cognitive</strong> Psychology 20:<br />

38–64.<br />

De Valois, K., V. Lakshminarayanan, R. Nygaard, S. Schlussel,<br />

and J. Sladky. (1990). Discrimination <strong>of</strong> relative spatial position.<br />

Vision Research 30: 1649–1660.<br />

Edelman, S., and H. Bülth<strong>of</strong>f. (1992). Orientation dependence<br />

in <strong>the</strong> recognition <strong>of</strong> familiar and novel views <strong>of</strong> threedimensional<br />

objects. Vision Research 32: 2385–2400.<br />

Gibson, J. J. (1950). Perception <strong>of</strong> <strong>the</strong> Visual World. Boston, MA:<br />

Houghton-Mifflin.<br />

Goodale, M., and A. Milner. (1992). Separate visual pathways for<br />

perception and action. Trends in Neuroscience 15: 20–25.<br />

Hochberg, J. E. (1964). Perception. Englewood Cliffs, NJ: Prentice-Hall.<br />

Humphrey, G., M. Goodale, L. Jakobson, and P. Servos. (1994).<br />

The role <strong>of</strong> surface information in object recognition: Studies<br />

<strong>of</strong> a visual form agnosic and normal subjects. Perception 23:<br />

1457–1481.<br />

Ito, M., H. Tamura, I. Fujita, and K. Tanaka. (1995). Size and position<br />

invariance <strong>of</strong> neuronal responses in monkey inferotemporal<br />

cortex. Journal <strong>of</strong> Neurophysiology 73: 218–226.<br />

Jolicoeur, P. (1987). A size-congruency effect in memory for visual<br />

shape. Memory and Cognition 15: 531–543.<br />

Jolicoeur, P., and M. Landau. (1984). Effects <strong>of</strong> orientation on <strong>the</strong><br />

identification <strong>of</strong> simple visual patterns. Canadian Journal <strong>of</strong><br />

Psychology 38: 80–93.<br />

Shape Perception 755<br />

Kanizsa, G. (1975). Contours without gradients or cognitive contours?<br />

Italian Journal <strong>of</strong> Psychology 1: 93–112.<br />

K<strong>of</strong>fka, K. (1935). Principles <strong>of</strong> Gestalt Psychology. New York:<br />

Harcourt, Brace, and World Inc.<br />

Kovacs, G., R. Vogels, and G. Orban. (1995). Selectivity <strong>of</strong><br />

macaque inferior temporal neurons for partially occluded<br />

shapes. Journal <strong>of</strong> Neuroscience 15: 1984–1997.<br />

Larsen, A. (1985). Pattern matching: Effects <strong>of</strong> size ratio, angular<br />

difference in orientation and familiarity. Perception and Psychophysics<br />

38: 63–68.<br />

Logo<strong>the</strong>tis, N., J. Pauls, and T. Poggio. (1995). Shape representation<br />

in <strong>the</strong> inferior temporal cortex <strong>of</strong> monkeys. Current Biology<br />

5: 552–563.<br />

Mach, E. (1959). The Analysis <strong>of</strong> Sensations. Translated by C. M.<br />

Williams. New York: Dover Publishers.<br />

Marr, D. (1982). Vision. San Francisco, CA: W. H. Freeman.<br />

Peterson, M. A., and B. S. Gibson. (1991). Directing spatial attention<br />

within an object: Altering <strong>the</strong> functional equivalence <strong>of</strong><br />

shape descriptions. Journal <strong>of</strong> Experimental Psychology:<br />

Human Perception and Performance 17: 170–182.<br />

Regan, D., and D. Hamstra. (1992). Shape discrimination and <strong>the</strong><br />

judgement <strong>of</strong> perfect symmetry: Dissociation <strong>of</strong> shape from<br />

size. Vision Research 32: 1845–1864.<br />

Rock, I., and D. Gutman. (1981). The effect <strong>of</strong> inattention on form<br />

perception. Journal <strong>of</strong> Experimental Psychology: Human Perception<br />

and Performance 7: 275–285.<br />

Rock, I., C. Linnett, P. Grant, and A. Mack. (1992). Perception<br />

without attention: Results <strong>of</strong> a new method. <strong>Cognitive</strong> Psychology<br />

24: 502–534.<br />

Rock, I., C. Schreiber, and T. Ro. (1994). The dependence <strong>of</strong> twodimensional<br />

shape perception on orientation. Perception 23:<br />

1389–1506.<br />

Sary, G., R. Vogels, G. Kovacs, and G. Orban. (1995). Responses<br />

<strong>of</strong> monkey inferior temporal neurons to luminance-, motionand<br />

texture-defined gratings. Journal <strong>of</strong> Neurophysiology 73:<br />

1341–1354.<br />

Sekuler, A. (1994). Local and global minima in visual completion:<br />

Effects <strong>of</strong> symmetry and orientation. Perception 23: 529–545.<br />

Sekuler, A., and S. Palmer. (1992). Perception <strong>of</strong> partly occluded<br />

objects: A microgenetic analysis. Journal <strong>of</strong> Experimental Psychology:<br />

General 121: 95–111.<br />

Sekuler, R., and D. Nash. (1972). Speed <strong>of</strong> size scaling in human<br />

vision. Psychonomic Science 1972: 93–94.<br />

Tanaka, K. (1993). Neuronal mechanisms <strong>of</strong> object recognition.<br />

Science 262: 685–688.<br />

Tarr, M., and S. Pinker. (1989). Mental rotation and orientationdependence<br />

in shape perception. <strong>Cognitive</strong> Psychology 21:<br />

233–282.<br />

Fur<strong>the</strong>r Readings<br />

Biederman, I. (1987). Recognition-by-components: A <strong>the</strong>ory <strong>of</strong><br />

human image understanding. Psychological Review 94: 115–<br />

147.<br />

Cavanagh, P., and Y. Leclerc. (1989). Shape from shadows. Journal<br />

<strong>of</strong> Experimental Psychology: Human Perception and Performance<br />

15: 3–27.<br />

Jolicoeur, P. (1992). Identification <strong>of</strong> disoriented objects: A dualsystems<br />

<strong>the</strong>ory. In G. Humphreys, Ed., Understanding Vision:<br />

An Interdisciplinary Perspective. Cambridge, MA: Blackwell,<br />

pp. 180–198.<br />

Marr, D., and H. Nishihara. (1978). Representation and recognition<br />

<strong>of</strong> <strong>the</strong> spatial organization <strong>of</strong> three-dimensional shapes. Proceedings<br />

<strong>of</strong> <strong>the</strong> Royal Society <strong>of</strong> London Series B Biological<br />

<strong>Sciences</strong> 200: 269–294.<br />

Rock, I. (1973). Orientation and Form. New York: Academic Press.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!