25.01.2014 Views

special - ALUMINIUM-Nachrichten – ALU-WEB.DE

special - ALUMINIUM-Nachrichten – ALU-WEB.DE

special - ALUMINIUM-Nachrichten – ALU-WEB.DE

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

PATENTE<br />

obvious that more than one mechanism must<br />

be involved. Solheim presented and discussed<br />

three models concerning cathode wear [17].<br />

Only one model, the so-called ‘carbon pump’-<br />

hypothesis, provides a direct link between local<br />

current densities at the cathode surface and<br />

the wear rate [17, 18]. It is based on the assumption<br />

that a solid aluminium carbide layer<br />

covers the cathode surface during cell operation,<br />

at least in spots or intermittently. This carbide<br />

layer contains pores filled with electrolyte<br />

which originates either from sludge or from a<br />

bath film present between aluminium pad and<br />

cathode. A possible pathway for the current is<br />

then either through metal-filled areas/pores,<br />

or more likely, around the carbide spots, leaving<br />

a high local current density at the edges and<br />

a smaller density above and below the centre<br />

of the ‘islands’.<br />

This current-shielding effect generates<br />

a potential gradient along electrolyte-filled<br />

pores, which might lead to electrochemical<br />

crystallisation of Al 4 C 3 at the bottom of the<br />

pore and dissolution of Al 4 C 3 at the top of the<br />

pore. The scenario is sketched in Fig. 5 [18]<br />

and can explain rapid wear leading to a W-<br />

shaped cross-section of a used cathode. However,<br />

other mechanisms exist that may increase<br />

the wear rate; e.g. the metal flow velocity<br />

and / or abrasion caused by the movement of<br />

alumina particles. This has not yet been considered<br />

in the modelling context described<br />

here. More work is certainly needed to clarify<br />

these issues. As a helpful tool, the commercial<br />

FEM simulation software COMSOL Multiphysics<br />

version 4.3 was used in the present<br />

work in order to evaluate and support experimental<br />

findings [14, 16, 18].<br />

Conclusions<br />

Laboratory tests indicate similar wear for all<br />

tested carbon cathode grades under standardised<br />

conditions, showing the independency on<br />

the material type, but a strong effect of local<br />

current density and metal flow velocity was<br />

identified.<br />

Acknowledgement<br />

The present work was carried out in the competence-building<br />

project ‘Durable Materials<br />

in Primary Aluminium Production’ (KMB,<br />

DuraMat), financed by the Research Council<br />

of Norway, Hydro Primary Metal Technology,<br />

Sør-Norge Aluminium, and Elkem Carbon.<br />

The authors gratefully acknowledge permission<br />

to publish the results.<br />

References<br />

[1] A. Tabereaux, JOM 52 (2000)2, pp. 23-29.<br />

[2] H.A. Øye and B.J Welch, JOM 50(1998)2, pp.<br />

18-23.<br />

[3] E. Skybakmoen, S. Rørvik, A. Solheim, K. R.<br />

Holm, P. Tiefenbach, and Ø. Østrem, Light Metals<br />

2011, pp. 1061-1066.<br />

[4] D. Lombard, T. Béhérégaray, B. Fève, and J. M.<br />

Jolas, Light Metals 1998, pp. 653-658.<br />

[5] M. Sørlie and H.A. Øye, Cathodes in Aluminum<br />

Electrolysis, Düsseldorf, Germany: Aluminum Verlag,<br />

2nd ed., 1994.<br />

[6] M.A. Coulombe, M. Lebeuf, P. Chartrand, B. Allard<br />

and G. Soucy, Light Metals 2010, pp. 811-816.<br />

[7] R.C. Dorward, Met. Trans 4(1973), pp. 386-<br />

388.<br />

[8] P. Reny and S. Wilkening, Light Metals 2000,<br />

pp. 399-404.<br />

[9] J. Rødseth, B. Rasch, Ole Lund, and J. Thonstad,<br />

Light Metals 2002, pp. 883-887.<br />

[10] R. Ødegård, Å. Sterten, and J. Thonstad, Light<br />

Metals 1987, pp. 295-302.<br />

[11] B. Novak, K. Tschöpe, A.P. Ratvik and T.<br />

Grande, Light Metals 2012, pp. 1343-1348.<br />

[12] B. Novak, K. Tschöpe, A.P. Ratvik and T.<br />

Grande, to be published in Light Metals 2013.<br />

[13] K. Tschöpe, A. Støre, S. Rørvik, A. Solheim,<br />

T. Grande, and A. P. Ratvik, Light Metals (COM)<br />

2011, pp. 143-153<br />

[14] K. Tschöpe, A. Støre, S. Rørvik, A. Solheim,<br />

E. Skybakmoen, T. Grande, and A. P. Ratvik, Light<br />

Metals 2012, pp. 1349-1354.<br />

[15] K. Tschöpe, A. Støre, E. Skybakmoen, A. Solheim,<br />

T. Grande, and A. P. Ratvik, to be published<br />

in Light Metals 2013.<br />

[16] K. Tschöpe, A. Støre, A. Solheim, E. Skybakmoen,<br />

T. Grande and A.P. Ratvik, to be published<br />

in JOM.<br />

[17] A. Solheim, Loght Metals (COM ) 2011, pp.<br />

135-142.<br />

[18] A. Solheim and K. Tschöpe, to be published in<br />

Light Metals 2013<br />

[19] E. Skybakmoen, A. P. Ratvik, A. Solheim, S.<br />

Rolseth, and H. Gudbrandsen, Light Metals 2007,<br />

pp. 815-820.<br />

[20] P. Rafiei, F. Hiltmann, M. Hyland, B. James, and<br />

B. Welch, Light Metals 2001, pp. 747-752.<br />

[21] P. Patel, M. Hyland, and F. Hiltmann, Light<br />

Metals 2005, pp. 757-762.<br />

[22] P. Patel, M. Hyland, and F. Hiltmann, Light<br />

Metals 2006, pp. 633-638.<br />

[23] Y. Sato, P. Patel, and P. Lavoie, Light Metals<br />

2010, pp. 817-822.<br />

[24] P. Patel. Y. Sato, and P. Lavoie, Light Metals<br />

2011, pp. 1073-1078.<br />

[25] K. Vasshaug, T. Foosnæs, G. M. Haarberg, A.<br />

P. Ratvik, and E. Skybakmoen, Light Metals 2007,<br />

pp. 821-826.<br />

[26] K. Vasshaug, T. Foosnæs, G. M. Haarberg, A.<br />

P. Ratvik, and E. Skybakmoen, Light Metals 2009,<br />

pp. 1111-1115.<br />

Authors<br />

Dr. Kati Tschöpe is research scientist at the electrolysis<br />

research team at SINTEF Materials and Chemistry<br />

since 2012. She has been working on cathode<br />

wear and degradation of bottom linings during her<br />

PhD and Postdoc position at the Norwegian University<br />

of Science and Technology (NTNU).<br />

Egil Skybakmoen is research manager at the electrolysis<br />

research team since 2004. He has 28 years<br />

of experience within aluminium electrolysis and<br />

his main fields of research have been fluoride bath<br />

chemistry and lining materials.<br />

Asbjørn Solheim, chief scientist, has conducted research<br />

within aluminium electrolysis at SINTEF for<br />

more than 30 years, particularly within bath chemistry<br />

and modelling.<br />

Dr. Tor Grande has been a professor at NTNU since<br />

1997 and has a broad experience in materials science<br />

and engineering with focus on both oxide and<br />

none-oxide materials.<br />

Patentblatt Oktober 2012<br />

Fortsetzung aus <strong><strong>ALU</strong>MINIUM</strong> 12/2012<br />

Verfahren zum waagerechten Gießen und<br />

Schneiden von Metallknüppeln. Novelis, Inc.,<br />

Toronto, Ontario, CA. (B22D 11/126, EP 2 286<br />

940, AT: 09.12.2004, EP-AT: 09.12.2004)<br />

Gussaluminiumlegierung und Zylinderkopf<br />

eines Verbrennungsmotors. Nippon Light Metal<br />

Co. Ltd., Tokio, JP; Nissan Motor Co., Ltd., Yokohama-shi,<br />

Kanagawa-ken, JP. (C22C 21/04, PS<br />

60 2008 009 916, EP 2014780, AT: 04.07.2008,<br />

EP-AT: 04.07.2008)<br />

Verfahren zur Herstellung eines Titanschweißdrahtes.<br />

Norsk Titanium Components AS, 0255<br />

Oslo, NO. (C22C 14/00, EPA 2491155, WO<br />

2011/049465, EP-AT: 21.10.2010, WO-AT:<br />

21.10.2010)<br />

Aluminiummaterial für eine Elektrode eines<br />

elektrolytischen Kondensators, Verfahren zur<br />

Herstellung von Elektrodenmaterial für einen<br />

elektrolyt. Kondensator, Anodenmaterial für<br />

einen elektrolyt. Aluminiumkondensator und<br />

elektrolyt. Aluminiumkondensator. Showa<br />

Denko K.K., Tokio, JP. (C22C 21/00, EP 1 841<br />

892, WO 2006/068300, AT: 21.12.2005, EP-AT:<br />

21.12.2005, WO-AT: 21.12.2005)<br />

Aluminiumbandmaterial für lithographische<br />

Druckplatten. Fujifilm Corp., Tokio, JP; Sumitomo<br />

Light Metal Industries, Ltd., Tokio, JP. (C22B 9/02,<br />

EP 2 284 288, AT: 24.07.2010, EP-AT: 24.07.2010)<br />

Magnesiumlegierungsplatte und Verfahren<br />

zur Herstellung derselben. Sumitomo Electric<br />

Industries, Ltd., Osaka, JP. (B21B 3/00, PS 603 08<br />

023, EP 1510265, WO 2003/103868, AT: 03.06.<br />

2003, EP-AT: 03.06.2003, WO-AT: 03.06.2003)<br />

Verfahren zum Druckgießen von gegliederten<br />

Metallgussstücken. Trimet Aluminium AG,<br />

45356 Essen, <strong>DE</strong>. (B22D 17/22, EP 2 008 740,<br />

AT: 21.06.2008, EP-AT: 21.06.2008)<br />

98 <strong><strong>ALU</strong>MINIUM</strong> · 1-2/2013

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!