23.12.2014 Views

1. magnetic confinement - ENEA - Fusione

1. magnetic confinement - ENEA - Fusione

1. magnetic confinement - ENEA - Fusione

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>1.</strong> MAGNETIC CONFINEMENT<br />

37<br />

[<strong>1.</strong>48] F. Alladio et al.,<br />

Pressure Anisotropy in<br />

Ohmic FTU Discharges,<br />

presented at the 18 th<br />

European Conf. on Control.<br />

Fusion and Plasma Physics,<br />

(Berlin 1991)<br />

[<strong>1.</strong>49] V.A. Vershkov, et<br />

al., Nucl. Fusion, Iokohama<br />

special issue 2, IAEA, 39,<br />

1775 (1999)<br />

Fig. <strong>1.</strong>31 - Turbulence<br />

behaviour of a typical<br />

FTU discharge: a)<br />

spectrum, b) cross phase,<br />

c) coherency, d) cross<br />

correlation, e) autocorrelation.<br />

The spectrum<br />

consists of three distinct<br />

parts: low frequency,<br />

quasi-coherent and broad<br />

band. The crosscorrelation<br />

function<br />

shows a fast and a slow<br />

rotating structure.<br />

Fig. <strong>1.</strong>32 - Evolution of<br />

turbulence behaviour<br />

during a spontaneous<br />

density peaking event.<br />

Coherency Cross-phase Amplitude<br />

π<br />

a.u.<br />

Amplitude<br />

kHz ω, 104 s-1 a.u. Part in signal cm 1019 m-3<br />

<strong>1.</strong>5<br />

<strong>1.</strong>0<br />

0.5<br />

0.0<br />

1<br />

0.6<br />

0.4<br />

0.2<br />

0.0<br />

-300 -200 -100 0 100 200<br />

0.4<br />

0.2<br />

0.0<br />

<strong>1.</strong>0<br />

0.5<br />

0.0<br />

-100<br />

6<br />

4<br />

2<br />

0<br />

10<br />

0<br />

0.5<br />

0.0<br />

0.4<br />

0.0<br />

0.4<br />

0.0 2<br />

1<br />

0<br />

100<br />

0<br />

0<br />

-1<br />

a)<br />

b)<br />

c)<br />

d)<br />

e)<br />

LF<br />

g)<br />

d)<br />

d)<br />

e)<br />

-12,84 µs<br />

(LF)<br />

QC<br />

-50<br />

300 400<br />

Time (ms)<br />

Frequency kHz<br />

0 50<br />

Time lag, µs<br />

i<br />

Line averaged density<br />

Reflection radius<br />

Broad band<br />

Low Frequency<br />

Quasi-coherent<br />

Angular velocity<br />

Quasi-coherent<br />

frequency<br />

f)<br />

-3.84µs (QC)<br />

500<br />

a)<br />

b)<br />

Cross<br />

correlation<br />

c) c)<br />

Auto<br />

correlation<br />

300<br />

100<br />

<strong>1.</strong>2 FTU Facilities<br />

direction but at a<br />

much lower speed<br />

(about 0.5×10 3 m s -1 ).<br />

This differs from the<br />

T-10 results, where<br />

this component does<br />

not move in the<br />

plasma core.<br />

Distinctive<br />

turbulence behaviour<br />

during a spontaneous<br />

density peaking<br />

“event” [<strong>1.</strong>48] is<br />

shown in figure <strong>1.</strong>32.<br />

A strong decrease in<br />

the quasi-coherent<br />

and broadband<br />

angular velocities<br />

and a simultaneous<br />

increase in the quasicoherent<br />

amplitude<br />

are observed at t=260<br />

ms when the density<br />

starts to rise.<br />

Suddenly, at t=340<br />

ms, this process<br />

reverses and the<br />

rotation of the high<br />

frequencies starts to<br />

increase, together<br />

with a transient<br />

disappearance of the<br />

quasi-coherent component, which<br />

appears again after a few ms at a<br />

much higher frequency. The growth<br />

of the low-frequency amplitude<br />

begins about 10 ms earlier, while its<br />

velocity remains constant. Such<br />

complex turbulence behaviour is very<br />

similar to that observed in T-10<br />

during SOC to IOC transition [<strong>1.</strong>49]<br />

and may be explained by the<br />

formation at the periphery of a<br />

transient velocity shear zone, which<br />

travels towards the centre. It initially<br />

flattens the gradients in the plasma<br />

core and the quasi-coherent velocity<br />

therefore decreases. The shear wave<br />

arrives at the reflecting radius at<br />

t=340 ms, as shown by a steep<br />

velocity rise and by a transient<br />

suppression of the quasi-coherent<br />

component. Note that, in reality, the<br />

low-frequency and quasi-coherent

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!