06.09.2021 Views

Basics of Fluid Mechanics, 2014a

Basics of Fluid Mechanics, 2014a

Basics of Fluid Mechanics, 2014a

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

58 CHAPTER 3. REVIEW OF MECHANICS<br />

3.3.2.2 The Parallel Axis Theorem<br />

The moment <strong>of</strong> inertial can be calculated for any axis. The knowledge about one axis<br />

can help calculating the moment <strong>of</strong> inertia for a parallel axis. Let I xx the moment <strong>of</strong><br />

inertia about axis xx which is at the center <strong>of</strong> mass/area.<br />

The moment <strong>of</strong> inertia for axis x ′<br />

is<br />

I x ′ x ′<br />

= ∫<br />

A<br />

∫<br />

r ′ 2 dA =<br />

A<br />

(<br />

y ′ 2 + z ′ 2) dA =<br />

equation (3.17) can be expended as<br />

I {<br />

xx<br />

∫ }} { {<br />

I x ′ x ′ = (<br />

y 2 + z 2) ∫ }} { ∫<br />

dA + 2 (y Δy + z Δz) dA +<br />

A<br />

A<br />

=0<br />

∫<br />

A<br />

[<br />

(y +Δy) 2 +(z +Δz) 2] dA (3.17)<br />

A<br />

(<br />

(Δy) 2 +(Δz) 2) dA (3.18)<br />

The first term in equation (3.18) on the right hand side is the moment <strong>of</strong> inertia about<br />

axis x and the second them is zero. The second therm is zero because it integral <strong>of</strong><br />

center about center thus is zero. The third term is a new term and can be written as<br />

∫<br />

A<br />

constant<br />

({ }} {<br />

(Δy) 2 +(Δz) 2) dA =<br />

A<br />

r<br />

{ }} 2<br />

(<br />

{<br />

{ }} {<br />

) ∫ 2<br />

(Δy) 2 +(Δz) dA = r 2 A (3.19)<br />

A<br />

x ′ x ′<br />

Hence, the relationship between the moment <strong>of</strong> inertia at xx and parallel axis<br />

is<br />

Parallel Axis Equation<br />

I x ′ x ′<br />

= I xx + r 2 A<br />

(3.20)<br />

z<br />

The moment <strong>of</strong> inertia <strong>of</strong> several areas<br />

is the sum <strong>of</strong> moment inertia <strong>of</strong> each<br />

area see Figure 3.5 and therefore,<br />

y<br />

2<br />

1<br />

n∑<br />

I xx = I xxi (3.21)<br />

i=1<br />

If the same areas are similar thus<br />

n∑<br />

I xx = I xxi = nI xxi (3.22)<br />

i=1<br />

Fig. -3.5. The schematic to explain the summation<br />

<strong>of</strong> moment <strong>of</strong> inertia.<br />

x

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!