06.09.2021 Views

Basics of Fluid Mechanics, 2014a

Basics of Fluid Mechanics, 2014a

Basics of Fluid Mechanics, 2014a

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

8.5. DERIVATIONS OF THE MOMENTUM EQUATION 251<br />

Equation (8.84) describing in Lagrangian coordinates a single particle. Changing it to<br />

the Eulerian coordinates transforms equation (8.84) into<br />

Dɛ x’<br />

Dt − Dɛ y’<br />

Dt = Dγ xy<br />

(8.85)<br />

Dt<br />

From (8.69) it can be observed that the right hand side <strong>of</strong> equation (8.85) can be<br />

replaced by τ xy /μ to read<br />

Dɛ x’<br />

Dt − Dɛ y’<br />

Dt = τ xy<br />

μ<br />

(8.86)<br />

From equation (8.76) τ xy be substituted and equation (8.86) can be continued<br />

and replaced as<br />

Figure 8.12 depicts the approximate<br />

linear deformation <strong>of</strong> the element. The linear<br />

deformation is the difference between<br />

the two sides as<br />

Dɛ x’<br />

Dt<br />

= ∂U x’<br />

∂x’<br />

Dɛ x’<br />

Dt − Dɛ y’<br />

Dt = 1<br />

2 μ (τ x’x’ − τ y’y’ ) (8.87)<br />

(8.88)<br />

y’<br />

U y’dt<br />

⎛<br />

⎜<br />

⎝U x’ + ∂Ux ⎞<br />

’<br />

dx<br />

∂x ’ ⎟<br />

⎠ dt<br />

’<br />

x’<br />

⎛<br />

⎞<br />

⎜<br />

⎝U y’ + ∂Uy’ dy<br />

∂y ’ ⎟<br />

’ ⎠ dt<br />

The same way it can written for the y’ coordinate.<br />

Fig. -8.12. Linear strain <strong>of</strong> the element purple<br />

denotes t and blue is for t + dt. Dashed<br />

Dɛ y’<br />

squares denotes the movement without the linear<br />

change.<br />

Dt = ∂U y’<br />

(8.89)<br />

∂y’<br />

Equation (8.88) can be written in the y’ and is similar by substituting the coordinates.<br />

The rate <strong>of</strong> strain relations can be substituted by the velocity and equations (8.88) and<br />

(8.89) changes into<br />

(<br />

∂Ux’<br />

τ x’x’ − τ y’y’ =2μ − ∂U )<br />

y’<br />

∂x’ ∂y’<br />

(8.90)<br />

Similar two equations can be obtained in the other two plans. For example in y’–z’ plan<br />

one can obtained<br />

(<br />

∂Ux’<br />

τ x’x’ − τ z’z’ =2μ − ∂U )<br />

z’<br />

(8.91)<br />

∂x’ ∂z’<br />

Adding equations (8.90) and (8.91) results in<br />

2<br />

4<br />

{ }} {<br />

{ }} {<br />

(3 − 1) τ x’x’ − τ y’y’ − τ z’z’ = (6 − 2) μ ∂U (<br />

x’ ∂Uy’<br />

− 2 μ + ∂U )<br />

z’<br />

∂x’ ∂y’ ∂z’<br />

(8.92)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!