06.09.2021 Views

Basics of Fluid Mechanics, 2014a

Basics of Fluid Mechanics, 2014a

Basics of Fluid Mechanics, 2014a

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

516 CHAPTER 12. COMPRESSIBLE FLOW 2–DIMENSIONAL<br />

M x M yw θ w δ<br />

P y<br />

P x<br />

T y<br />

T x<br />

P 0y<br />

P 0x<br />

2.3575 1.9419 34.0590 10.5100 1.3984 1.3268 0.97569<br />

P 1<br />

= P 1 P 2<br />

=1.4089 × 1.3984 ∼ 1.97<br />

P 3 P 2 P 3<br />

T 1<br />

= T 1 T 2<br />

=1.3582 × 1.3268 ∼ 1.8021<br />

T 3 T 2 T 3<br />

End Solution<br />

Example 12.13:<br />

Compare a direct normal shock to oblique shock with a normal shock. Where will the<br />

total pressure loss (entropy) be larger? Assume that upstream Mach number is 5 and<br />

the first oblique shock has Mach angle <strong>of</strong> 30 ◦ . What is the deflection angle in this case?<br />

Solution<br />

For the normal shock the results are<br />

M x M y<br />

T y<br />

T x<br />

ρ y<br />

ρ x<br />

P y<br />

P x<br />

P 0y<br />

P 0x<br />

5.0000 0.41523 5.8000 5.0000 29.0000 0.06172<br />

While the results for the oblique shock are<br />

M x M ys M yw θ s θ w δ<br />

P 0y<br />

P 0x<br />

5.0000 0.41523 3.0058 0.0 30.00 20.17 0.49901<br />

And the additional information is<br />

M x M yw θ w δ<br />

P y<br />

P x<br />

T y<br />

T x<br />

P 0y<br />

P 0x<br />

5.0000 3.0058 30.0000 20.1736 2.6375 2.5141 0.49901<br />

The normal shock that follows this oblique is<br />

M x M y<br />

T y<br />

T x<br />

ρ y<br />

ρ x<br />

P y<br />

P x<br />

P 0y<br />

P 0x<br />

3.0058 0.47485 2.6858 3.8625 10.3740 0.32671

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!