06.09.2021 Views

Basics of Fluid Mechanics, 2014a

Basics of Fluid Mechanics, 2014a

Basics of Fluid Mechanics, 2014a

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

4.5. FLUID FORCES ON SURFACES 105<br />

The moment <strong>of</strong> inertia <strong>of</strong> the triangle around x is made <strong>of</strong> two triangles (as shown<br />

in the Figure (4.24) for triangle 1 and 2). Triangle 1 can be calculated as the moment <strong>of</strong><br />

inertia around its center which is l 0 +2∗(l 1 −l 0 )/3. The height <strong>of</strong> triangle 1 is (l 1 −l 0 )<br />

and its width b and thus, moment <strong>of</strong> inertia about its center is I xx = b(l 1 − l 0 ) 3 /36.<br />

The moment <strong>of</strong> inertia for triangle 1 about y is<br />

I xx1 = b(l 1−l 0 ) 3<br />

36<br />

+<br />

A 1<br />

{ }} {<br />

b(l 1 −l 0 )<br />

3<br />

Δx 1<br />

2<br />

{<br />

(<br />

}} {<br />

) 2<br />

l 0 + 2(l 1−l 0 )<br />

3<br />

The height <strong>of</strong> the triangle 2 is a − (l 1 − l 0 ) and its width b and thus, the moment <strong>of</strong><br />

inertia about its center is<br />

I xx2 = b[a−(l1−l0)]3<br />

36<br />

+<br />

A 2<br />

{ }} {<br />

b[a−(l 1−l 0)]<br />

3<br />

Δx 2<br />

2<br />

{<br />

(<br />

}} {<br />

) 2<br />

l 1 + [a−(l1−l0)]<br />

3<br />

and the total moment <strong>of</strong> inertia<br />

I xx = I xx1 + I xx2<br />

The product <strong>of</strong> inertia <strong>of</strong> the triangle can<br />

be obtain by integration. It can be noticed<br />

that upper line <strong>of</strong> the triangle is<br />

y = (l 1−l 0 )x<br />

b<br />

+ l 0 . The lower line <strong>of</strong> the<br />

triangle is y = (l 1−l 0 −a)x<br />

b<br />

+ l 0 + a.<br />

⎡<br />

∫ b ∫ (l1−l0−a)x<br />

b<br />

+l 0+a<br />

I xy = ⎣<br />

xydx<br />

+l 0<br />

0<br />

(l 1−l 0)x<br />

b<br />

The solution <strong>of</strong> this set equations is<br />

A<br />

y<br />

l 1 b<br />

F 3<br />

1<br />

2<br />

F 1<br />

F 2<br />

Fig. -4.24. The general forces acting on a non<br />

⎤ symmetrical straight area.<br />

⎦ dy = 2 ab2 l 1 +2 ab 2 l 0 +a 2 b 2<br />

24<br />

{[ }} ]{<br />

ab (g (6 l1 +3a)+6gl 0 ) ρ sin β +8P atmos<br />

F 1 =<br />

,<br />

3<br />

24<br />

F<br />

[ 2<br />

ab<br />

3<br />

F<br />

[ 3<br />

ab<br />

3<br />

] = −<br />

] =<br />

„<br />

„ « «<br />

12 l1<br />

(3 l 1 −14 a)−l 0 a −27 12 l02<br />

+<br />

a<br />

gρ sin β<br />

72<br />

−<br />

„„<br />

a−<br />

„„<br />

24 l1<br />

a −24 «<br />

+<br />

„<br />

15 l1<br />

a<br />

«+l 0 27−<br />

+<br />

«<br />

48 l0<br />

a<br />

P atmos<br />

72<br />

,<br />

12 l1 12 l02<br />

a<br />

«+<br />

a<br />

72<br />

„„ «<br />

24 l1<br />

a +24 + 48 l «<br />

0<br />

a<br />

P atmos<br />

72<br />

End Solution<br />

«<br />

gρ sin β<br />

x<br />

l 0<br />

a

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!