06.09.2021 Views

Basics of Fluid Mechanics, 2014a

Basics of Fluid Mechanics, 2014a

Basics of Fluid Mechanics, 2014a

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

10.1. INTRODUCTION 329<br />

With the identity in (10.13) can be extend as<br />

( ( ∂Ux<br />

U ×∇×U = −i U y<br />

∂y − ∂U y<br />

∂x<br />

( ( ∂Uy<br />

− j U x<br />

∂x − ∂U x<br />

∂y<br />

(<br />

− k<br />

) ( ∂Ux<br />

+ U z<br />

∂z − ∂U ) )<br />

z<br />

∂x<br />

) ( ∂Uy<br />

+ U z<br />

∂z − ∂U ) )<br />

z<br />

∂y<br />

( ∂Uz<br />

U x<br />

∂x − ∂U x<br />

∂z<br />

) ( ∂Uz<br />

+ U y<br />

∂y − ∂U ) )<br />

y<br />

(10.14)<br />

∂z<br />

The identity described in equation (10.14) is substituted into equation (10.12) to obtain<br />

the form <strong>of</strong><br />

DU<br />

Dt = ∂U<br />

∂t + ∇ (U)2 − U ×∇×U (10.15)<br />

Finally substituting equation (10.15) into the Euler equation to obtain a more convenient<br />

form as<br />

( )<br />

∂U<br />

ρ<br />

∂t + ∇ (U)2 − U ×∇×U = −∇P − ∇ ρ g l (10.16)<br />

A common assumption that employed in an isothermal flow is that density, ρ, is<br />

a mere function <strong>of</strong> the static pressure, ρ = ρ(P ). According to this idea, the density is<br />

constant when the pressure is constant. The mathematical interpretation <strong>of</strong> the pressure<br />

gradient can be written as<br />

∇P = dP ˆn (10.17)<br />

dn<br />

where ˆn is an unit vector normal to surface <strong>of</strong> constant property and the derivative<br />

d /dn refers to the derivative in the direction <strong>of</strong> ˆn. Dividing equation (10.17) by the<br />

density, ρ, yields<br />

∇P<br />

ρ = 1 dP<br />

dn ρ ˆn = 1<br />

dn<br />

zero<br />

net<br />

effect<br />

{}}{ ∫ ( ) dP<br />

d<br />

ρ<br />

ˆn = d ∫ ( dP<br />

dn ρ<br />

)<br />

∫ ( dP<br />

ˆn = ∇<br />

ρ<br />

)<br />

(10.18)<br />

It can be noticed that taking a derivative after integration cancel both effects. The<br />

derivative in the direction <strong>of</strong> ˆn is the gradient. This function is normal to the constant<br />

<strong>of</strong> pressure, P , and therefore ∫ (dP / ρ) is function <strong>of</strong> the mere pressure.<br />

Substituting equation (10.18) into equation (10.16) and collecting all terms under<br />

the gradient yields<br />

(<br />

∂U<br />

∂t + ∇ U 2 ∫ ( ) ) dP<br />

2 + g l + = U ×∇×U (10.19)<br />

ρ

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!