06.09.2021 Views

Basics of Fluid Mechanics, 2014a

Basics of Fluid Mechanics, 2014a

Basics of Fluid Mechanics, 2014a

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

11.10. INTRODUCTION 473<br />

or in simple terms as<br />

Density Ratio<br />

ρ 1<br />

ρ 2<br />

= U 2<br />

U 1<br />

= M 2<br />

M 1<br />

√<br />

T2<br />

T 1<br />

(11.216)<br />

or substituting equations (11.213) and (11.216) into equation (11.214) yields<br />

T 2<br />

= 1+kM 1 2<br />

T<br />

2<br />

1 1+kM 2<br />

M 2<br />

M 1<br />

√<br />

T2<br />

T 1<br />

(11.217)<br />

Transferring the temperature ratio to the left hand side and squaring the results gives<br />

T 2<br />

T 1<br />

=<br />

Temperature Ratio<br />

[<br />

2 1+kM1<br />

1+kM 2<br />

2<br />

] 2 (<br />

M2<br />

M 1<br />

) 2<br />

(11.218)<br />

The Rayleigh line exhibits two possible<br />

maximums one for dT/ds = 0 and for<br />

ds/dT =0. The second maximum can<br />

be expressed as dT/ds = ∞. The second<br />

law is used to find the expression for the<br />

derivative.<br />

s 1 − s 2<br />

=ln T 2<br />

− k − 1<br />

C p T 1 k<br />

ln P 2<br />

P 1<br />

(11.219)<br />

T<br />

M1<br />

P=P ⋆<br />

M=1<br />

Fig. -11.38. The temperature entropy diagram<br />

for Rayleigh line.<br />

s<br />

s 1 − s 2<br />

C p<br />

[<br />

=2ln ( 1+kM 1 2 )<br />

(1 + kM 2 2 )<br />

]<br />

M 2<br />

M 1<br />

+ k − 1<br />

k<br />

[ 1+kM21<br />

2<br />

]<br />

ln<br />

2<br />

1+kM 1<br />

(11.220)<br />

Let the initial condition M 1 , and s 1 be constant and the variable parameters are M 2 ,<br />

and s 2 . A derivative <strong>of</strong> equation (11.220) results in<br />

1 ds<br />

C p dM = 2(1− M 2 )<br />

M (1 + kM 2 (11.221)<br />

)<br />

Taking the derivative <strong>of</strong> equation (11.221) and letting the variable parameters be T 2 ,<br />

and M 2 results in<br />

dT<br />

dM = constant × 1 − kM2<br />

(1 + kM 2 ) 3 (11.222)<br />

Combining equations (11.221) and (11.222) by eliminating dM results in<br />

dT<br />

ds = constant × M(1 − kM 2 )<br />

(1 − M 2 )(1 + kM 2 ) 2 (11.223)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!