08.02.2013 Views

Journal of Mechanics of Materials and Structures vol. 5 (2010 ... - MSP

Journal of Mechanics of Materials and Structures vol. 5 (2010 ... - MSP

Journal of Mechanics of Materials and Structures vol. 5 (2010 ... - MSP

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

808 YING LI AND CHANG-JUN CHENG<br />

3. The Hamilton principle <strong>and</strong> mathematical model <strong>of</strong> thermoelastic beams with voids<br />

In order to present the nonlinear mathematical model <strong>of</strong> the problem, we first derive a generalized Hamilton<br />

principle for thermoelastic beams with voids under geometric nonlinearity.<br />

Let<br />

� �<br />

��<br />

Mϕ = ϕ(xi, t)x2x3 dA <strong>and</strong> Mθ = θ(xi, t)x2x3 dA (6)<br />

A<br />

A<br />

be the moments caused by the change <strong>of</strong> the <strong>vol</strong>ume fraction ϕ(xi, t) <strong>and</strong> temperature θ(xi, t), respectively.<br />

Set<br />

� �<br />

qϕ = αv x2x3(ϕ,22 + ϕ,33) dA<br />

A<br />

�� b/2<br />

= αv<br />

−b/2<br />

qθ = K<br />

� �<br />

�<br />

(x3ϕ,3)| h/2<br />

�<br />

� h/2 �<br />

−h/2 − ϕ|h/2<br />

−h/2<br />

x2 dx2 + (x2ϕ,2)|<br />

−h/2<br />

b/2<br />

�<br />

�<br />

−b/2 − ϕ|b/2<br />

−b/2<br />

x3 dx3 ,<br />

x2x3(θ,22 + θ,33) dA<br />

T0 A<br />

�� b/2<br />

= K<br />

T0<br />

−b/2<br />

�<br />

(x3θ,3)| h/2<br />

�<br />

� h/2 �<br />

−h/2 − θ|h/2<br />

−h/2<br />

x2 dx2 + (x2θ,2)|<br />

−h/2<br />

b/2<br />

�<br />

�<br />

−b/2 − θ|b/2<br />

−b/2<br />

x3 dx3 .<br />

According to [Cowin <strong>and</strong> Nunziato 1983], on the surfaces <strong>of</strong> the beam, ϕ(xi, t) needs to satisfy the<br />

conditions ϕ,2|x2=±b/2 = 0 <strong>and</strong> ϕ,3|x3=±h/2 = 0, so the expression for qϕ simplifies to<br />

� � b/2<br />

� h/2<br />

qϕ = −αv<br />

(ϕ| b/2<br />

−b/2 )x3<br />

�<br />

dx3<br />

(8)<br />

(ϕ|<br />

−b/2<br />

h/2<br />

−h/2 )x2 dx2 +<br />

−h/2<br />

The thermal boundary conditions <strong>of</strong> the beam may be given as<br />

K θ,2|x2=b/2 = ¯h(T∞ − θb/2), K θ,2|x2=−b/2 = −¯h(T∞ − θ−b/2),<br />

K θ,3|x3=h/2 = ¯h(T∞ − θh/2), K θ,3|x3=−h/2 = −¯h(T∞ − θ−h/2),<br />

where ¯h is the heat transfer coefficient, θb/2, θ−b/2, θh/2, <strong>and</strong> θ−h/2 denote the temperatures on the<br />

surfaces x2 = ±b/2 <strong>and</strong> x3 = ±h/2, <strong>and</strong> T∞ is the temperature <strong>of</strong> surrounding medium. If we assume<br />

that T∞ = 0, the absolute temperature is equal to the reference temperature. The second expression <strong>of</strong><br />

(7) then simplifies to<br />

� � b/2<br />

h ¯h/2 + K<br />

qθ = −<br />

(θ| h/2<br />

−h/2 )x2 dx2 + b¯h/2<br />

� h/2 + K<br />

(θ| b/2<br />

−b/2 )x3<br />

�<br />

dx3 . (10)<br />

T0<br />

−b/2<br />

To evaluate (8) <strong>and</strong> (10), we express the change <strong>of</strong> the <strong>vol</strong>ume fraction <strong>and</strong> temperature as the series<br />

ϕ(xi, t) =<br />

∞�<br />

Substituting (11) into (6) yields<br />

m=0 n=0<br />

T0<br />

∞�<br />

ϕmn(x1, t)x m 2 xn 3 ,θ(xi, t) =<br />

∞�<br />

−h/2<br />

m=0 n=0<br />

∞�<br />

ϑmn(x1, t)x m 2 xn 3<br />

(7)<br />

(9)<br />

(11)<br />

Mϕ = Aϕ11(x1, t) + o(b 3 h 3 ) , Mθ = Aϑ11(x1, t) + o(b 3 h 3 ), (12)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!