08.02.2013 Views

Journal of Mechanics of Materials and Structures vol. 5 (2010 ... - MSP

Journal of Mechanics of Materials and Structures vol. 5 (2010 ... - MSP

Journal of Mechanics of Materials and Structures vol. 5 (2010 ... - MSP

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

A NONLINEAR MODEL OF THERMOELASTIC BEAMS WITH VOIDS, WITH APPLICATIONS 811<br />

convenience, we here study the plane bending <strong>of</strong> the beam only, that is, u2(x1, t) ≡ 0. As it is difficult<br />

to obtain the solution <strong>of</strong> the problem directly, we will apply the differential quadrature method (DQM)<br />

to discretize the nonlinear system on the spatial domain.<br />

The DQM is a numerical technique for solving boundary-valued problems. It was developed in [Bellman<br />

<strong>and</strong> Casti 1971], <strong>and</strong> since then it has been successfully employed to solve all kinds <strong>of</strong> problems in<br />

engineering <strong>and</strong> science due to the DQM owns the advantages <strong>of</strong> little amount <strong>of</strong> nodes <strong>and</strong> computation,<br />

high precision <strong>and</strong> good convergence <strong>and</strong> so on.<br />

The DQM approximates the derivative <strong>of</strong> a function, with respect to the independent variable at a given<br />

discrete point, as a weighted linear sum <strong>of</strong> the values <strong>of</strong> the function at all the discrete points chosen in<br />

the solution domain <strong>of</strong> the independent variable, in which the weighting coefficients are only associated<br />

with the given discrete points in the solution domain <strong>and</strong> independent <strong>of</strong> a certain problem. Therefore,<br />

any differential equations can be transformed into a set <strong>of</strong> the corresponding algebraic equations.<br />

Introduce the nondimensional variables <strong>and</strong> parameters<br />

a1 = bv<br />

D0<br />

X = x1<br />

h<br />

u1 u3<br />

, U = , W =<br />

h<br />

, a2 = βT0<br />

, a3 =<br />

D0<br />

a9 = mv<br />

, a10 =<br />

ρce<br />

bvh 2<br />

αv<br />

¯h<br />

2ρceV1<br />

h , β1 = h<br />

,<br />

l<br />

V1<br />

τ = t ,<br />

l<br />

Mϕ<br />

ψ = 12 ,<br />

h2 Mθ<br />

� = 12 ,<br />

T0h 2<br />

(23)<br />

,<br />

ξvh 2 mvT0h 2<br />

a4 = , a5 = ,<br />

αv<br />

αv<br />

� �<br />

V1<br />

2<br />

a6 = , a8 =<br />

V3<br />

β<br />

, a11 =<br />

,<br />

ρce<br />

ρceV1h q3<br />

, ¯p = ,<br />

K D0<br />

�<br />

D0<br />

V1 =<br />

ρ , V3<br />

�<br />

αv<br />

= .<br />

ρχ<br />

(24)<br />

From (24), one sees that the coefficients a1 <strong>and</strong> a3 are the coupling deformation-void parameters,<br />

which represent the coupling degree <strong>of</strong> the deformation <strong>and</strong> <strong>vol</strong>ume fraction field. The coefficient a6 is<br />

the ratio <strong>of</strong> the longitudinal wave velocity to the <strong>vol</strong>ume fraction wave velocity, which represents the ratio<br />

<strong>of</strong> the elastic constant to the void constant. The coefficient a4 is a void parameter. The coefficients a2 <strong>and</strong><br />

a8 are the coupling deformation-heat parameters, which represent the coupling degree <strong>of</strong> the deformation<br />

<strong>and</strong> temperature field. The coefficient a10 is a convection heat transfer parameter, <strong>and</strong> a11 is the ratio <strong>of</strong><br />

dilational wave velocity to thermal conductive coefficient. The coefficients a5 <strong>and</strong> a9 are the coupling<br />

void-heat parameters, which represent the coupling degree <strong>of</strong> the <strong>vol</strong>ume fraction <strong>and</strong> temperature field.<br />

The differential quadrature discretization forms <strong>of</strong> the nondimensional differential equations are<br />

N�<br />

A (2)<br />

k=1<br />

β1<br />

� N�<br />

k=1<br />

N�<br />

l=1<br />

A (1)<br />

ik Wk · N�<br />

ik Uk + β1<br />

k=1<br />

l=1<br />

A (2)<br />

ik Uk · N�<br />

A (1)<br />

il Wl + N�<br />

N�<br />

A (2)<br />

k=1<br />

β1<br />

− β2 1<br />

ik ψk + a3<br />

k=1<br />

N�<br />

a11 k=1<br />

A (2)<br />

ik �k + a8β 2 1<br />

k=1<br />

A (2)<br />

il Wl = Üi,<br />

A (1)<br />

ik Uk · N�<br />

N�<br />

A<br />

12 k=1<br />

(4)<br />

ik Wk + a1<br />

N�<br />

12 k=1<br />

N�<br />

A (2)<br />

ik Wk − a4 + 12<br />

N�<br />

k=1<br />

A (2)<br />

ik<br />

β 2 1<br />

l=1<br />

A (2)<br />

il Wl<br />

�<br />

+ 3<br />

2 β2 � N�<br />

1 A<br />

k=1<br />

(1)<br />

ik Wk<br />

�2 N�<br />

A<br />

l=1<br />

(2)<br />

il Wl<br />

A (2)<br />

ik ψk − a2<br />

12<br />

ψi + a5<br />

β2 1<br />

˙Wk − a9 ˙ψi −<br />

N�<br />

k=1<br />

�i = a6 ¨ψi,<br />

�<br />

a10 + 1<br />

�<br />

12<br />

a11<br />

A (2)<br />

ik �k + ¯p<br />

β 2 1<br />

β1<br />

θ+ − θ−<br />

T0<br />

= ¨Wi − β2 1<br />

12<br />

= ˙�i,<br />

N�<br />

k=1<br />

A (2)<br />

ik<br />

¨Wk,<br />

(25)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!