08.02.2013 Views

Journal of Mechanics of Materials and Structures vol. 5 (2010 ... - MSP

Journal of Mechanics of Materials and Structures vol. 5 (2010 ... - MSP

Journal of Mechanics of Materials and Structures vol. 5 (2010 ... - MSP

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

�<br />

δT2 = Iρ<br />

��<br />

δW =<br />

A NONLINEAR MODEL OF THERMOELASTIC BEAMS WITH VOIDS, WITH APPLICATIONS 819<br />

∂�<br />

� ∂ ˙u3<br />

∂x1<br />

�<br />

� � �<br />

∂<br />

�<br />

∂2 ˙u3<br />

l δ ˙u3 ds − Iρ<br />

� ∂t ∂x 2 �<br />

δu3 −<br />

1<br />

∂2ü3 ∂x 2 �<br />

δu3 d�,<br />

1<br />

(q1δu1 + q3δu3) d� + Nx0δu1(0) − Nxaδu1(a),<br />

�<br />

�� � � t1<br />

δD(Mθ) = −<br />

� 0<br />

K<br />

�<br />

h ¯h<br />

Mθ,11δMθ + +<br />

T0<br />

2T0<br />

K<br />

� � � � t1<br />

12<br />

K<br />

MθδMθ dt1 d�+ (l Mθ,1δMθ) dt1 ds,<br />

T0 h2 ∂� 0 T0<br />

� � � 0 ∂ε11 δU = −(λ + 2µ)h δu1 +<br />

� ∂x1<br />

∂<br />

�<br />

ε<br />

∂x1<br />

0 � �<br />

��<br />

∂u3<br />

(λ + 2µ)h3 ∂<br />

11 δu3 d� +<br />

∂x1<br />

12 �<br />

4u3 ∂x 4 δu3 d�<br />

1<br />

�� �<br />

+ −αv Mϕ,11δMϕ + ξv MϕδMϕ +<br />

�<br />

12αv<br />

� ��<br />

MϕδMϕ d� − mv(MϕδMθ + MθδMϕ) d�<br />

h2 �<br />

− h3<br />

�� �<br />

(bvδMϕ − βδMθ)<br />

12 �<br />

∂2u3 ∂x 2 �<br />

∂<br />

+ bv<br />

1<br />

2Mϕ ∂x 2 −β<br />

1<br />

∂2 Mθ<br />

∂x 2 � � ��<br />

ρce<br />

δu3 d� − MθδMθ d� + δUB,<br />

1<br />

� T0<br />

in which<br />

� �<br />

δUB = (λ + 2µ)h lε<br />

∂�<br />

0 11δu1 + lε 0 �<br />

� �<br />

∂u3 (λ + 2µ)h3<br />

11 δu3 ds + l<br />

∂x1<br />

12 ∂�<br />

∂2u3 ∂x 2 δ<br />

1<br />

∂u3<br />

− l<br />

∂x1<br />

∂3u3 ∂x 3 �<br />

δu3 ds<br />

1<br />

� � �<br />

∂<br />

�<br />

Mϕ<br />

+ αv l δMϕ −<br />

∂� ∂x1<br />

h3<br />

�<br />

l(bv Mϕ − β Mθ)δ<br />

12<br />

∂u3<br />

�<br />

+<br />

∂x1<br />

h3<br />

�<br />

� �<br />

l(bv Mϕ − β Mθ),1 δu3 ds,<br />

12<br />

� t��<br />

�<br />

�<br />

�<br />

δ�B = T αδuα ds + (uα − ūα)δTα ds + MhδMϕ ds + (Mϕ − Mϕ)δMh ds<br />

�<br />

+<br />

∂VQ<br />

0<br />

∂Vσ<br />

�<br />

1<br />

M QδMθ ds +<br />

T0<br />

��<br />

+<br />

�<br />

∂Vθ<br />

∂Vu<br />

T0<br />

∂Vh<br />

� ��<br />

1<br />

(Mθ − Mθ)δMQ ds dt +<br />

ρχh � (Mϕ|t=0 − M 0 ϕ )δ ˙Mϕ − ˙M 0 ϕδMϕ ��<br />

�<br />

d� +<br />

�<br />

h<br />

�<br />

�� t1<br />

∂Vϕ<br />

ρh � (uα|t=0 − u 0 α )δ ˙uα − ˙u 0 αδuα �<br />

d�<br />

ρce<br />

(Mθ|t=0 − M 0 θ )δMθ<br />

�<br />

dt d�.<br />

Substituting these variational formulas into δ� = 0, we can obtain the differential equations <strong>of</strong> motion<br />

in terms <strong>of</strong> u1, u3, Mϕ, Mθ, that is, Equations (20).<br />

Boundary conditions can be derived from the following boundary virtual work equation in variational<br />

equation:<br />

� �<br />

(λ + 2µ)h lε<br />

∂�<br />

0 11δu1 + lε 0 �<br />

� �<br />

∂u3 (λ + 2µ)h3<br />

11 δu3 ds + l<br />

∂x1<br />

12 ∂�<br />

∂2u3 ∂x 2 δ<br />

1<br />

∂u3<br />

− l<br />

∂x1<br />

∂3u3 ∂x 3 �<br />

δu3 ds<br />

1<br />

� � �<br />

∂<br />

�<br />

Mϕ<br />

+ αv l δMϕ −<br />

∂� ∂x1<br />

h3l 12 (bv Mϕ − β Mθ)δ ∂u3<br />

+<br />

∂x1<br />

h3l 12 (bv<br />

�<br />

Mϕ − β Mθ),1δu3 ds<br />

� � t1 K<br />

+ (l Mθ,1δMθ) dt1 ds − Nxaδu1(a) + Nx0δu1(0) = 0.<br />

∂�<br />

0<br />

T0<br />

References<br />

[Bellman <strong>and</strong> Casti 1971] R. E. Bellman <strong>and</strong> J. Casti, “Differential quadrature <strong>and</strong> long-term integration”, J. Math. Anal. Appl.<br />

34:2 (1971), 235–238.<br />

0<br />

T0

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!