08.02.2013 Views

Journal of Mechanics of Materials and Structures vol. 5 (2010 ... - MSP

Journal of Mechanics of Materials and Structures vol. 5 (2010 ... - MSP

Journal of Mechanics of Materials and Structures vol. 5 (2010 ... - MSP

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

MATRIX OPERATOR METHOD FOR THERMOVISCOELASTIC ANALYSIS OF COMPOSITE STRUCTURES 853<br />

it is straightforward to obtain the solution for the unknown radial displacement. After cancellation <strong>of</strong> the<br />

terms containing temperature, the result is<br />

u = c1r + c2<br />

r ,<br />

where c1 <strong>and</strong> c2 are constants. The general solution for the stresses in each elastic cylinder is<br />

σrr = E<br />

1 + ν<br />

�<br />

c1 c2<br />

−<br />

1 − 2ν r 2<br />

�<br />

− E<br />

1 − 2ν α�T, σθθ = σrr + rσr,r.<br />

Using the boundary conditions for the problem <strong>of</strong> composite cylinder (Figure 3), namely<br />

σ inc<br />

rr = 0 at r = r0, σ inc bind<br />

rr = σrr at r = r1, u inc<br />

r = ubind r at r = r1, σ bind<br />

rr = 0 at r = r2,<br />

the constants c1 <strong>and</strong> c2 are found for each cylindrical layer. Then the solution for the circumferential<br />

stresses in the binder is given by (27)–(28), in which<br />

b(r) = − r 2 1<br />

·<br />

r 2<br />

a(r) = − r 2 1<br />

r 2 · r 2 0 −r 2 1<br />

r 2 1 −r 2 2<br />

r 2 +r 2 2<br />

r 2 1 −2νbr 2 1 +r 2 2<br />

r<br />

·<br />

2 +r 2 2<br />

r 2−2νir 2 1 +r 2 0<br />

· (αi −1)(νi +1)<br />

, c =<br />

νb+1<br />

r 2 0 −r 2 1<br />

r 2 1 −r 2 2<br />

· αb(νb+1)−(νi +1)<br />

, (A3)<br />

νi +1<br />

· r 2 1 −2νbr 2 1 +r 2 2<br />

r 2 −2νir 2 1 +r 2 0<br />

· νb+1<br />

. (A4)<br />

νi +1<br />

The solution for the total circumferential strains in the inclusion is given by (29)–(30), in which<br />

d = 1 + (1−2νi) r 2 1<br />

r 2 ,<br />

0<br />

g = r 2 1<br />

r 2 ·<br />

0<br />

r 2 0 −r 2 1<br />

r 2 1 −r 2 �<br />

1−2νb+<br />

2<br />

r 2 2<br />

r 2 �<br />

1+νb<br />

.<br />

1+νi 1<br />

(A5)<br />

References<br />

[AASHTO 2005] “St<strong>and</strong>ard specification for performance graded asphalt binder”, st<strong>and</strong>ard M320-05, American Association<br />

<strong>of</strong> State Highway <strong>and</strong> Transportation Officials, Washington, DC, 2005.<br />

[AASHTO 2007] “St<strong>and</strong>ard method <strong>of</strong> test for determining the fracture properties <strong>of</strong> asphalt binder in direct tension (DT)”,<br />

st<strong>and</strong>ard T314-07, American Association <strong>of</strong> State Highway <strong>and</strong> Transportation Officials, Washington, DC, 2007.<br />

[AASHTO 2008] “St<strong>and</strong>ard method <strong>of</strong> test for determining the flexural creep stiffness <strong>of</strong> asphalt binder using the bending beam<br />

rheometer (BBR)”, st<strong>and</strong>ard T313-08, American Association <strong>of</strong> State Highway <strong>and</strong> Transportation Officials, Washington, DC,<br />

2008.<br />

[Arutyunyan <strong>and</strong> Zevin 1997] N. K. Arutyunyan <strong>and</strong> A. A. Zevin, Design <strong>of</strong> structures considering creep, A. A. Balkema,<br />

Brookfield, VT, 1997.<br />

[Barber 1992] J. R. Barber, Elasticity, Kluwer, Dordrecht, 1992.<br />

[Bažant 1972] Z. P. Bažant, “Numerical determination <strong>of</strong> long-range stress history from strain history in concrete”, Mater.<br />

Struct. 5 (1972), 135–141.<br />

[Bykov et al. 1971] D. L. Bykov, A. A. Il’yushin, P. M. Ogibalov, <strong>and</strong> B. E. Pobedrya, “Some fundamental problems <strong>of</strong> the<br />

theory <strong>of</strong> thermoviscoelasticity”, Mech. Compos. Mater. 7:1 (1971), 36–49.<br />

[Chien <strong>and</strong> Tzeng 1995] L. S. Chien <strong>and</strong> J. T. Tzeng, “A thermal viscoelastic analysis for thick-walled composite cylinders”, J.<br />

Compos. Mat. 29:4 (1995), 525–548.<br />

[Ekel’chik et al. 1994] V. S. Ekel’chik, L. V. Konovalova, <strong>and</strong> V. M. Ryabov, “Use <strong>of</strong> the Laplace transform to calculate<br />

temperature stresses in viscoelastic bodies during uniform cooling”, Mech. Compos. Mater. 29:5 (1994), 516–519.<br />

[Ferry 1961] J. D. Ferry, Viscoelastic properties <strong>of</strong> polymers, 2nd ed., Wiley, New York, 1961.<br />

[Findley et al. 1976] W. N. Findley, J. S. Lai, <strong>and</strong> K. Onaran, Creep <strong>and</strong> relaxation <strong>of</strong> nonlinear viscoelastic materials, Series<br />

Appl. Math. Mech. 18, North-Holl<strong>and</strong>, Amsterdam, 1976. Reprinted Dover, New York, 1989.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!