08.02.2013 Views

Journal of Mechanics of Materials and Structures vol. 5 (2010 ... - MSP

Journal of Mechanics of Materials and Structures vol. 5 (2010 ... - MSP

Journal of Mechanics of Materials and Structures vol. 5 (2010 ... - MSP

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

PLANAR BEAMS: MIXED VARIATIONAL DERIVATION AND FE SOLUTION 779<br />

In Section 3, D−1 denotes the fourth-order elastic tensor; from now on, we use the same notation to<br />

indicate the corresponding square matrix obtained following engineering notation. Therefore, we have<br />

D −1 = 1<br />

⎡<br />

⎤<br />

1 −ν 0<br />

⎣−ν<br />

1 0 ⎦ .<br />

E<br />

0 0 2(1+ν)<br />

4.2. Formulation <strong>of</strong> the problems. We consider the special case <strong>of</strong> a beam for which<br />

¯s = 0 on A0 = ∂�s, t �= 0 on Al, f = 0 in �, t = 0 on S0 ∪ Sn.<br />

Hence, ∂�t = Al ∪ S0 ∪ Sn; the beam is clamped on the left-h<strong>and</strong> side A0, <strong>and</strong> is subjected to a nonvanishing<br />

traction field on the right-h<strong>and</strong> side Al. Furthermore, we suppose that t|Al can be exactly represented<br />

using the chosen pr<strong>of</strong>iles for σ · n. Recalling (13), <strong>and</strong> noting that n|Al = (1, 0)T , this means that there<br />

exist suitable vectors ˆtx <strong>and</strong> ˆtτ such that<br />

�<br />

pT σx t =<br />

ˆtx<br />

�<br />

. (14)<br />

p T τ ˆtτ<br />

Therefore, the boundary condition σ · n|Al = t may be written as (see (13))<br />

� � � �<br />

ˆσx(l) ˆtx<br />

= . (15)<br />

ˆτ(l) ˆtτ<br />

All these assumptions can be modified to cover more general cases; nonetheless, this simple model is<br />

already adequate to illustrate the method’s capabilities.<br />

4.2.1. HR grad-grad approach. In the notation <strong>of</strong> Section 4.1, the HR grad-grad stationarity (5) becomes<br />

δ J gg<br />

HR =<br />

� ��<br />

d<br />

� dx ET d<br />

1 +<br />

dy ET � � �<br />

T<br />

2 Psδˆs Pσ ˆσ d� + δ ˆσ<br />

�<br />

T P T ��<br />

d<br />

σ dx ET d<br />

1 +<br />

dy ET � �<br />

2 Ps ˆs d�<br />

�<br />

− δ ˆσ T P T σ D−1 �<br />

Pσ ˆσ d� − δˆs T P T<br />

t dy = 0. (16)<br />

Exp<strong>and</strong>ing (16) we obtain<br />

δ J gg<br />

HR =<br />

�<br />

(δˆs ′T P T<br />

�<br />

s E1 Pσ ˆσ + δˆs T P ′T<br />

s E2<br />

�<br />

Pσ ˆσ )d� +<br />

�<br />

�<br />

�<br />

−<br />

Using the Fubini–Tonelli theorem, (17) can be written as<br />

δ J gg<br />

HR =<br />

�<br />

where<br />

∂�t<br />

(δ ˆσ T P T σ ET 1 Ps ˆs ′ + δ ˆσ T P T σ ET 2 P′<br />

�<br />

δˆs T P T<br />

s t dy = 0. (17)<br />

δ ˆσ<br />

�<br />

T P T σ D−1 Pσ ˆσ d� −<br />

(δˆs<br />

l<br />

′T Gsσ ˆσ + δˆs T Hs ′ σ ˆσ + δ ˆσ T Gσ s ˆs ′ + δ ˆσ T Hσ s ′ ˆs − δ ˆσ T Hσ σ ˆσ )dx − δˆs T Tx<br />

Gsσ = G T σ s =<br />

�<br />

P<br />

A<br />

T<br />

s E1<br />

�<br />

Pσ dy, Hσ σ = P<br />

A<br />

T σ D−1 Pσ dy,<br />

Hs ′ σ = H T σ s ′ =<br />

�<br />

A<br />

P ′T<br />

s E2 Pσ dy, Tx =<br />

�<br />

Al<br />

P T<br />

s t dy.<br />

Al<br />

s<br />

s ˆs)d�<br />

�<br />

�<br />

� = 0, (18)<br />

x=l<br />

(19)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!