24.02.2013 Views

25th International Meeting on Organic Geochemistry IMOG 2011

25th International Meeting on Organic Geochemistry IMOG 2011

25th International Meeting on Organic Geochemistry IMOG 2011

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

O-44<br />

Bacterial formati<strong>on</strong> of (di)ether lipids: a state of the art<br />

Vincent Grossi 1 , Agnès Hirschler-Réa 2 , Philippe Schaeffer 3 , Cristiana Cravo-Laureau 4<br />

1 CNRS - Université de Ly<strong>on</strong>, Villeurbanne, France, 2 IRD, Universités de Provence et de la Méditerranée,<br />

Marseille, France, 3 CNRS - Université de Strasbourg, Strasbourg, France, 4 Université de Pau et des Pays<br />

de l’Adour, Pau, France (corresp<strong>on</strong>ding author:vincent.grossi@univ-ly<strong>on</strong>1.fr)<br />

The actual knowledge of the biosynthesis of<br />

glycerol ether lipids by Bacteria will be reviewed and<br />

expanded with recent results showing for the first time<br />

the producti<strong>on</strong> of dialkyl glycerol diethers (DGDs) by a<br />

mesophilic (hydrocarb<strong>on</strong>-degrading) marine sulfatereducing<br />

bacterium (SRB).<br />

One of the distinguishing features between Archaea<br />

and Bacteria is the chemical compositi<strong>on</strong> of their<br />

cellular membranes. Bacteria generally synthesise<br />

phospholipids (n<strong>on</strong>-isoprenoid alkyl chains esterified<br />

to glycerol) whereas archaeal membrane lipids are<br />

composed of isoprenoid di- and tetraethers of glycerol<br />

(isoprenoid DGDs and GDGTs, respectively). These<br />

different chemical structures have implicati<strong>on</strong> in term<br />

of ecology and evoluti<strong>on</strong>, and are frequently used to<br />

distinguish between Bacteria and Archaea in<br />

(paleo)envir<strong>on</strong>mental studies. N<strong>on</strong>-isoprenoid DGDs<br />

and GDGTs c<strong>on</strong>stitute an excepti<strong>on</strong> to these chemical<br />

distincti<strong>on</strong>s as they exhibit an intriguing combinati<strong>on</strong><br />

of structural characteristics of Bacteria and Archaea.<br />

N<strong>on</strong>-isoprenoid DGDs are relatively uncomm<strong>on</strong> in<br />

bacteria but have been reported in some<br />

(hyper)thermophilic bacteria, planctomycetes and<br />

myxobacteria [1]. However, these biomarkers are<br />

omnipresent in different n<strong>on</strong>-thermophilic soils and<br />

aquatic sediments [especially those where anaerobic<br />

oxidati<strong>on</strong> of methane (AOM) occurs], where they are<br />

supposed to originate from anaerobic bacteria<br />

involved in sulfur and/or methane cycles and in<br />

carb<strong>on</strong>ate precipitati<strong>on</strong> [2]. To date, this biological<br />

origin is not dem<strong>on</strong>strated and the physiological role<br />

of DGDs remains unknown.<br />

The lipid compositi<strong>on</strong> of a newly isolated<br />

hydrocarb<strong>on</strong>-degrading marine SRB, able to grow<br />

between 20°C and 40°C, is dominated by n<strong>on</strong>isoprenoid<br />

m<strong>on</strong>o- and di-ethers of glycerol. The<br />

chemical compositi<strong>on</strong> of ether lipids appears str<strong>on</strong>gly<br />

dependent <strong>on</strong> that of the growth substrate. Ethers<br />

formed during growth <strong>on</strong> mid-chain n-alkenes (C14-<br />

C16) have alkyl chains in the same carb<strong>on</strong> range,<br />

whereas growth <strong>on</strong> shorter substrates (pyruvate,<br />

octanoate, etc.) generally yields a more complex<br />

mixture of DGDs. Interestingly, the fatty acid<br />

compositi<strong>on</strong> of the strain resembles that of the ether<br />

alkyl chains, suggesting a biosynthetic link between<br />

both classes of compounds. Cultures performed with<br />

synthetic (per)deuterated n-alkenes support these<br />

links by unambiguously dem<strong>on</strong>strating the direct<br />

incorporati<strong>on</strong> of degradati<strong>on</strong> intermediates [i.e.<br />

corresp<strong>on</strong>ding labelled alcohols and (branched-) fatty<br />

acids] into glycerol m<strong>on</strong>oether/m<strong>on</strong>oester and diether<br />

lipids (Fig. 1).<br />

R<br />

R CH2OH<br />

glycerol<br />

diethers<br />

sn-Glycerol-3-P<br />

R COOH<br />

+<br />

ether/<br />

ester<br />

H<br />

HO O<br />

P<br />

10-Me branching<br />

10<br />

�-oxidati<strong>on</strong><br />

HO<br />

R COOH<br />

R COOH<br />

Fig. 1. Formati<strong>on</strong> of glycerol (di)ethers during the anaerobic<br />

oxidati<strong>on</strong> of n-alkenes by a newly isolated mesophilic SRB.<br />

Besides describing the first producti<strong>on</strong> of diether<br />

lipids in a mesophilic and heterotrophic anaerobic<br />

bacterium, our work further extends the metabolic<br />

pathways of unsaturated hydrocarb<strong>on</strong>s in anaerobic<br />

envir<strong>on</strong>ments. The major geochemical and<br />

biochemical implicati<strong>on</strong>s of these findings and the<br />

comparis<strong>on</strong> of this strain with SRB involved in AOM<br />

and/or carb<strong>on</strong>ate precipitati<strong>on</strong> will be discussed.<br />

References<br />

[1] Weijers, J.W., Schouten, S., Hopmans, E.C.,<br />

Geenevasen, J.A., David, O.R., Coleman, J.M., et al. (2006)<br />

Envir<strong>on</strong>mental Microbiology 8, 648-657.<br />

[2] Bradley, A.S., Fredricks, H., Hinrichs K.-U.,<br />

Summ<strong>on</strong>s, R.E. (2009) <strong>Organic</strong> <strong>Geochemistry</strong> 40, 1169-<br />

1178.<br />

104

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!