24.02.2013 Views

25th International Meeting on Organic Geochemistry IMOG 2011

25th International Meeting on Organic Geochemistry IMOG 2011

25th International Meeting on Organic Geochemistry IMOG 2011

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

P-466<br />

Can molecular markers for pyrogenic carb<strong>on</strong> help to rec<strong>on</strong>struct<br />

wildfire temperatures?<br />

Maximilian P.W. Schneider 1 , William C. Hockaday 2 , Caroline A. Masiello 2 , Michael W.I.<br />

Schmidt 1<br />

1 University of Zurich, Department of Geography, Zurich, Switzerland, 2 Rice University, Department of Earth<br />

Science, Houst<strong>on</strong>, United States of America (corresp<strong>on</strong>ding author:maximilian.schneider@geo.uzh.ch)<br />

The maximum temperature experienced by charcoals<br />

str<strong>on</strong>gly influences relevant properties, such as<br />

surface area (Brown et al., 2006), sorpti<strong>on</strong> capacity<br />

(Chen et al., 2008) and degradability (Bruun et al.,<br />

2008; Zimmerman, 2010). Yet informati<strong>on</strong> about the<br />

temperature during formati<strong>on</strong> of natural charcoals in<br />

the envir<strong>on</strong>ment is difficult to obtain.<br />

Benzenepolycarboxylic acids (BPCA) are molecular<br />

markers specific for pyrogenic carb<strong>on</strong> (PyC) and are<br />

used to quantify PyC in soils, sediments and oceans<br />

(Hammes et al., 2008; Dittmar & Paeng, 2009).<br />

Additi<strong>on</strong>ally to quantitative informati<strong>on</strong>, the<br />

c<strong>on</strong>centrati<strong>on</strong> of <strong>on</strong>e of the marker molecules, B6CA<br />

(mellitic acid), provides informati<strong>on</strong> <strong>on</strong> the degree of<br />

aromatic c<strong>on</strong>densati<strong>on</strong> in charcoals and probably,<br />

also the intensity of the heat treatment during the<br />

pyrolysis process (Schneider et al., 2010). We<br />

calibrated this ―molecular thermometer‖ by using a<br />

thermosequence of charcoals (200 to 1000°C),<br />

produced under N2 atmosphere from two different<br />

types of biomass (grass and wood) in a tube furnace<br />

(Schneider et al., <strong>2011</strong>).<br />

So far it is not clear how other factors during<br />

pyrolysis, such as availability of oxygen, moisture and<br />

expositi<strong>on</strong> time, influence the resulting molecular<br />

marker pattern. Here we apply the molecular marker<br />

method to a set of 10 charcoals produced during a<br />

c<strong>on</strong>trolled burn experiment, which was c<strong>on</strong>ducted at<br />

the US Forest Service Silas Little Experimental<br />

Forest, located near New Lisb<strong>on</strong>, New Jersey. The<br />

charred samples were derived from litter and bark of<br />

pitch pine (Pinus rigida) and inkberry (Ilex glabra)<br />

plants. Thermo-sensitive paints were used to keep<br />

record of the upper temperature range that a sample<br />

experienced during the fire event. Maximum<br />

temperatures of 260 to 650°C were m<strong>on</strong>itored, which<br />

are typical temperatures for wildfires and which is well<br />

within the calibrated temperature range of the<br />

thermosequence charcoals. We compare the<br />

estimated formati<strong>on</strong> temperatures derived from<br />

molecular marker patterns with those measured by<br />

the thermo-sensitive paints. Our results show if the<br />

―molecular thermometer‖ can be used to estimate the<br />

formati<strong>on</strong> temperature of natural charcoals.<br />

References<br />

Brown, R.A., Kercher, A.K., Nguyen, T.H., Nagle,<br />

D.C., Ball, W.P., 2006. Producti<strong>on</strong> and<br />

characterizati<strong>on</strong> of synthetic wood chars for use as<br />

surrogates for natural sorbents. <strong>Organic</strong><br />

<strong>Geochemistry</strong> 37, 321-333.<br />

Bruun, S., Jensen, E.S., Jensen, L.S., 2008. Microbial<br />

mineralizati<strong>on</strong> and assimilati<strong>on</strong> of black carb<strong>on</strong>:<br />

Dependency <strong>on</strong> degree of thermal alterati<strong>on</strong>. <strong>Organic</strong><br />

<strong>Geochemistry</strong> 39, 839-845.<br />

Chen, B.L., Zhou, D.D., Zhu, L.Z., 2008. Transiti<strong>on</strong>al<br />

adsorpti<strong>on</strong> and partiti<strong>on</strong> of n<strong>on</strong>polar and polar<br />

aromatic c<strong>on</strong>taminants by biochars of pine needles<br />

with different pyrolytic temperatures. Envir<strong>on</strong>mental<br />

Science & Technology 42, 5137-5143.<br />

Dittmar, T., Paeng, J., 2009. A heat-induced<br />

molecular signature in marine dissolved organic<br />

matter. Nature Geoscience 2, 175-179.<br />

Hammes, K., Torn, M.S., Lapenas, A.G., Schmidt,<br />

M.W.I., 2008. Centennial black carb<strong>on</strong> turnover<br />

observed in a Russian steppe soil. Biogeosciences 5,<br />

1339-1350.<br />

Schneider, M.P.W., Hilf, M., Vogt, U.F., Schmidt,<br />

M.W.I., 2010. The benzene polycarboxylic acid<br />

(BPCA) pattern of wood pyrolyzed between 200 °C<br />

and 1000 °C. <strong>Organic</strong> <strong>Geochemistry</strong> 41, 1082-1088.<br />

Schneider, M.P.W., Smittenberg, R.H., Dittmar, T.,<br />

Schmidt, M.W.I., <strong>2011</strong>. Comparis<strong>on</strong> of gas with liquid<br />

chromatography for the determinati<strong>on</strong> of<br />

benzenepolycarboxylic acids as molecular tracers of<br />

black carb<strong>on</strong>. <strong>Organic</strong> <strong>Geochemistry</strong> (in press).<br />

Zimmerman, A.R., 2010. Abiotic and microbial<br />

oxidati<strong>on</strong> of laboratory-produced black carb<strong>on</strong><br />

(biochar). Envir<strong>on</strong>mental Science & Technology 44,<br />

1295-1301.<br />

591

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!