24.02.2013 Views

25th International Meeting on Organic Geochemistry IMOG 2011

25th International Meeting on Organic Geochemistry IMOG 2011

25th International Meeting on Organic Geochemistry IMOG 2011

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

P-420<br />

� 2 H differences am<strong>on</strong>g lipids synthesised via the ACT<br />

(acetogenic), MVA (meval<strong>on</strong>ic) and DXP (1-deoxy-D-xylulose 5phosphate)<br />

pathways in higher plant leaves: possible evidence<br />

for intracellular water (H+) isotopic heterogeneity<br />

Youping Zhou 1,2 , Kliti Grice 1 , Hilary Stuart-Williams 2 , Graham Farquhar 2 , Charles Hocart 2<br />

1 Curtin University, Perth, Australia, 2 Australian Nati<strong>on</strong>al University, Canberra, Australia (corresp<strong>on</strong>ding<br />

author:y.zhou@curtin.edu.au)<br />

Carb<strong>on</strong>-bound hydrogen atoms in lipids from higher<br />

plant leaves have three immediate sources: 1)<br />

inherited from biosynthetic precursors, 2) water (H + ) in<br />

which biosynthesis occurs and 3) bio-reductant<br />

NAD(P)H [1,2,3,4,5] . Hydrogen isotopic ratios ( 2 H/ 1 H) of<br />

lipids are determined by those of the sources modified<br />

by isotopic fracti<strong>on</strong>ati<strong>on</strong>s during biosynthesis. Lipids<br />

synthesised via the ACT pathway (e.g. n-alkanes), the<br />

MVA (e.g. sterols) and the DXP pathway (e.g. phytol)<br />

were isolated from leaves of C3 and C4 species<br />

grown under c<strong>on</strong>trolled and field c<strong>on</strong>diti<strong>on</strong>s.<br />

Compound-specific isotopic analysis (CSIA) of these<br />

lipid revealed that an inter-pathway hydrogen isotopic<br />

enrichment order: � 2 HACT > � 2 HMVA > � 2 HDXP exists in<br />

all species examined [1,3,5] . There is an isotopic<br />

enrichment ordering between photosynthetic modes:<br />

� 2 HC4 < � 2 HC3 (for ACT), � 2 HC4 > � 2 HC3 (for MVA and<br />

DXP) [1,3,5] . Average inter-pathway differences for C4<br />

plants are smaller than for C3 plants.<br />

An investigati<strong>on</strong> of the histories of the individual<br />

hydrogen atoms in these lipid molecules, based <strong>on</strong><br />

available knowledge of their biosynthetic chemistry,<br />

indicated that the observed inter-pathway order is a<br />

result of intracellular NADPH variati<strong>on</strong> and<br />

intracellular water isotopic heterogeneity. NADPH and<br />

water (H + ) in the chloroplast are isotopically more<br />

depleted in 2 H than their respective cytosolic<br />

counterparts. The inter-compartmental water and<br />

NADPH isotopic differences are passed <strong>on</strong>to lipid<br />

molecules synthesised in each cellular compartment<br />

via enzyme-catalysed hydrati<strong>on</strong> or NAD(P)H<br />

reducti<strong>on</strong> of metabolic intermediates.<br />

Compartmentalisati<strong>on</strong> of initial photosynthetic CO2<br />

fixati<strong>on</strong> into the C4 mesophyll (M) cell and final CO2<br />

fixati<strong>on</strong> in the bundle sheath (BS) cell results in more<br />

2 H-depleted pyruvate (in comparis<strong>on</strong> to C3), the<br />

precursor for lipids synthesised via the ACT pathway<br />

in the chloroplast, due to the exchange of carb<strong>on</strong>bound<br />

hydrogen in pyruvate with the less enriched<br />

cellular water in the BS cell (relative to M cellular<br />

water) during the malate-pyruvate shuttle.<br />

Compartmentalisati<strong>on</strong> in C4 plants also results in less<br />

depleted NADPH in the M chloroplast (in comparis<strong>on</strong><br />

to C3) for lipid synthesis via DXP pathway due to the<br />

selective export of 2 H-depleted NADPH from the M<br />

cell to the BS cell and a less depleted pyruvate in the<br />

BS cytosol for lipid synthesis via MVA pathway due to<br />

the suppressi<strong>on</strong> of photorespirati<strong>on</strong> (Fig 1) [5] .<br />

Mesophyll chloroplast<br />

malate<br />

malate<br />

NADP +<br />

NADPH<br />

pyruvate<br />

Bundle sheath cytosol<br />

COO<br />

O<br />

-<br />

H �<br />

H �<br />

H b<br />

COO<br />

OH<br />

-<br />

H �<br />

H �<br />

O - 2e + H OPi RuBP<br />

GAP O<br />

H C5 H<br />

H C3C HO HO O<br />

C4 H<br />

C3 H<br />

C2 H<br />

H<br />

C24 OH<br />

C H<br />

15<br />

OPi H<br />

OC<br />

H C1 H<br />

OPi HO<br />

CO2 H<br />

H<br />

FBP<br />

O<br />

OH<br />

C3C H C3C H G6P<br />

C24 OH<br />

C24 O<br />

Starch<br />

C15 H<br />

H C15 H<br />

OPi DHAP Maltose<br />

OPi + + NADP + NADPH + H +<br />

H<br />

+ -<br />

H2O H + HO<br />

Calvin Cycle<br />

+<br />

+ -<br />

H2O H + HO<br />

H<br />

lumen<br />

sterol<br />

O<br />

HO<br />

H<br />

HO<br />

HO<br />

C15 H<br />

C24 H<br />

C3C OH<br />

C3C H<br />

C24 H<br />

+<br />

H + H +<br />

H +<br />

H +<br />

H +<br />

H +<br />

H +<br />

H + H +<br />

H +<br />

H +<br />

H +<br />

H +<br />

H +<br />

stroma<br />

PS I<br />

Cyt bf<br />

Cyt bf<br />

pyruvate<br />

malate pyruvate<br />

PS I<br />

PGA<br />

PGA<br />

NADPH NADP +<br />

DHAP Maltose<br />

DHAP<br />

COO<br />

OPi -<br />

H �<br />

H �<br />

O<br />

COO<br />

CO2 -<br />

H �<br />

H �<br />

O - COO<br />

O<br />

OC<br />

-<br />

H �<br />

H �<br />

O - NADP<br />

OC<br />

+<br />

COO<br />

OH<br />

NADPH<br />

-<br />

H �<br />

H �<br />

O - H<br />

OC<br />

COO<br />

OPi<br />

-<br />

H ��b<br />

H ��b<br />

COO<br />

O<br />

ATP<br />

AMP<br />

-<br />

H �<br />

H �<br />

H b<br />

malate pyruvate<br />

PGA OH H<br />

O C3C C24 C15 OPi OH H H<br />

PS I<br />

PS II<br />

H<br />

Cyt bf<br />

OAA<br />

PEP<br />

GAP OH H<br />

OPi O C3C C24 C<br />

H<br />

15<br />

H H H<br />

TPI H<br />

OH Cyt bf<br />

C3C H<br />

C24 O<br />

PS II<br />

C15 H<br />

PS I<br />

C18 Fatty acid<br />

Mesophyll cytosol<br />

+<br />

H +<br />

H +<br />

H +<br />

H +<br />

H +<br />

H +<br />

H +<br />

H +<br />

H +<br />

H +<br />

H +<br />

PGA<br />

DHAP<br />

Fig 1. Compartmentalisati<strong>on</strong> of C4 photosynthesis into<br />

mesophyll cell and bundle sheath cell.<br />

[1] Chikaraishi et al. (2009) Phytochem 70, 569-573<br />

[2] Schmidt et al. (2008) Phytochem Rev 2, 61-85<br />

[3] Sessi<strong>on</strong>s et al. (1999) Org Geochem 30, 1193-1200<br />

[4] Zhang et al. (2009) PNAS 106, 12580-12586<br />

[5] Zhou et al. (2010) Phytochem 71, 388-403<br />

stroma<br />

lumen<br />

2H 2 O 4H + + O 2 + 4e<br />

Bundle sheath chloroplast<br />

H 2 O H + + HO -<br />

H<br />

glycolysis TCA<br />

C 15 H<br />

OP i<br />

H 2 O H + + HO -<br />

2e + H + + NADP + NADPH + H +<br />

glucose<br />

548

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!