24.02.2013 Views

25th International Meeting on Organic Geochemistry IMOG 2011

25th International Meeting on Organic Geochemistry IMOG 2011

25th International Meeting on Organic Geochemistry IMOG 2011

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

P-429<br />

Microbial diversity and organic matter cycling of methanerelated<br />

seabed seepage structures in Irish waters<br />

Shane O' Reilly 1 , Michal Szpak 1 , Xavier M<strong>on</strong>teys 2 , Christopher Allen 3 , Brian Kelleher 1<br />

1 Dublin City University, Dublin, Ireland, 2 Geological Survey of Ireland, Dublin, Ireland, 3 Queen's University<br />

Belfast, Belfast, United Kingdom (corresp<strong>on</strong>ding author:brian.kelleher@dcu.ie)<br />

Introducti<strong>on</strong>: Seabed seepage structures –<br />

pockmarks and methane-derived authigenic<br />

carb<strong>on</strong>ate (MDAC) mounds in Irish waters have been<br />

investigated using � 13 C m<strong>on</strong>itoring of lipid biomarkers,<br />

denaturing gradient-gel electrophoresis (DGGE) and<br />

phylogenetic analysis of bacterial and archaeal 16S<br />

rRNA genes. In Irish waters, pockmarks have been<br />

documented in the Malin Sea (M<strong>on</strong>teys et al, 2008),<br />

the Porcupine Bank (Games, 2001) and in the W.<br />

Irish Sea. In the Irish Sea at the Codling Fault Z<strong>on</strong>e<br />

(CFZ) gas seepage, and anaerobic oxidati<strong>on</strong> of<br />

methane) has facilitated the formati<strong>on</strong> of c. 30 MDAC<br />

mounds (Croker et al. 2005). Selected data from<br />

pockmarks in the Malin Sea and Dunmanus Bay, and<br />

MDACs in the Irish Sea are presented here.<br />

Methods: SEM was performed using a Hitachi<br />

S3400-N. Lipids were extracted by modified<br />

Bligh/Dyer or ultras<strong>on</strong>ic-assisted extracti<strong>on</strong> and n<strong>on</strong>extractable<br />

lipids were obtained from base-/acid-<br />

hydrolysis of residues. Desulphurized extracts were<br />

fracti<strong>on</strong>ated, derivitized and analysed <strong>on</strong> an Agilent<br />

6890N/5975C GC-MS coupled to an Isoprime 100<br />

irMS. DNA was extracted and purified according to<br />

Zhou et al (1996). 16S bacterial and archaeal rRNA<br />

genes were PCR-amplified using universal primers<br />

(63f/1387r and Arch-25f/Arch-907r). DGGE was<br />

performed <strong>on</strong> nested GC-clamp PCR products (CBS<br />

Scientific DGGE 2401). 16S rDNA cl<strong>on</strong>e libraries<br />

were created using Cl<strong>on</strong>eJET PCR cl<strong>on</strong>ing kit<br />

(Fermentas), clustering by restricti<strong>on</strong> analysis, and<br />

representative cl<strong>on</strong>es were sequenced, and analysed<br />

using NCBI BLAST, ClustalW and MEGA4 software.<br />

Results<br />

Figure 1: MDAC SEM Images A. Quartz cemented by arag<strong>on</strong>ite &<br />

dolomite crystals. B. Arag<strong>on</strong>ite crystals & framboidal pyrite.<br />

Total<br />

Br- Br-<br />

PLFA SATFA MUFA PUFA SATFA UFA δC 13<br />

MDAC 1.83 0.49 0.43 n.d. 0.67 n.d -27.6<br />

Pockmark 13.84 3.44 2.35 0.74 6.07 0.17 -27.7<br />

Table 1: MDAC and Dunmanus PLFA abundances (�g g -1 ) and<br />

average � 13 C values. (SATFA- saturated FA, MUFA- m<strong>on</strong>ounsaturated FA, PUFApolyunsaturated<br />

FA, Br-SATFA- branched saturated FA, Br-UFA- branched unsaturated FA)<br />

Figure 2: Dendrogram comparing DGGE profiles in Dunmanus Bay<br />

pockmark field (GC04, GC09, GC10) and c<strong>on</strong>trol (GC14)<br />

2mbsf 6mbsf<br />

Species<br />

Cl<strong>on</strong>es<br />

%<br />

Total<br />

Cl<strong>on</strong>es<br />

%<br />

Total<br />

Psychrobacter sp. 35 54 22 44<br />

Sulfitobacter sp. 9 14 13 26<br />

Alcanovirax borkumensis SK2 4 6 - -<br />

Acinetobacter baumannii 3 5 - -<br />

Geobacillus sp. 3 5 - -<br />

Stenotrophom<strong>on</strong>as maltophilia 2 3 - -<br />

Aromatoleum aromaticum 1 2 - -<br />

Marinom<strong>on</strong>as sp. 1 2 - -<br />

Pseudoalterom<strong>on</strong>as halo. 1 2 2 4<br />

Thiobacillus thioparus - - 2 4<br />

Variovorax paradoxus - - 1 2<br />

Colwellia sp. - - 1 2<br />

Uncultured α-proteobacterium - - 2 4<br />

Table 2: Bacterial species vertical distributi<strong>on</strong> in Malin pockmark<br />

Discussi<strong>on</strong>: PLFA and DGGE profiles indicate a<br />

more diverse bacterial populati<strong>on</strong> in the Dunmanus<br />

pockmarks, compared to the MDAC site and a lower<br />

bacterial abundance in the MDAC (Table 1.). DGGE<br />

profiles show a statistically heterogenous bacterial,<br />

but homogenous archaeal community in the<br />

Dunmanus pockmarks compared to the surrounding<br />

envir<strong>on</strong>ment and interestingly, the opposite within the<br />

MDAC (Figure 2.). DGGE band sequencing indicate<br />

dominant bacteria within the Dunmanus pockmark<br />

field are Achromobacter and Stenotrophom<strong>on</strong>as sp.<br />

16S rRNA bacterial phylogenetic analysis in the Malin<br />

pockmark show dominant species bel<strong>on</strong>g to<br />

Psychrobacter and Sulfitobacter sp., which decrease<br />

and increase in abundance with depth, respectively.<br />

Notably, minor species compositi<strong>on</strong> is also markedly<br />

different (Table 2.).<br />

References<br />

1. Croker, P.F. et al. (2005) SEA6 Report 2. Games,<br />

K.P. (2001) Geol. Soc. Of L<strong>on</strong>d<strong>on</strong> 3. M<strong>on</strong>teys , X. et<br />

al. (2008) OSP-01, 33rd Inter. Geol. C<strong>on</strong>gr., Oslo 4.<br />

Zhou, J. et al. (1996) Appl. Envir<strong>on</strong>. Microbiol. 62:316-<br />

322<br />

555

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!