15.04.2013 Views

Bose-Einstein Condensates in Rotating Traps and Optical ... - BEC

Bose-Einstein Condensates in Rotating Traps and Optical ... - BEC

Bose-Einstein Condensates in Rotating Traps and Optical ... - BEC

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

9.4 Sound Waves 121<br />

9.4 Sound Waves<br />

For Vext =0, the small-current hydrodynamic equations (9.17,9.18) have sound wave solutions.<br />

These correspond to small amplitude plane wave perturbations ∆n(r,t), ∆v(r,t) of a Bloch<br />

state associated with constant macroscopic density ¯nM <strong>and</strong> macroscopic velocity ¯vM. Here,<br />

we restrict ourselves to sound waves mov<strong>in</strong>g <strong>in</strong> the lattice direction <strong>in</strong> a Bloch state condensate<br />

with quasi-momentum ¯hk <strong>and</strong> velocity ¯vM =¯hk/m oriented <strong>in</strong> the same direction. In this<br />

case, the perturbation takes the form<br />

∆n(z,t) ∝ ∆n(z) e i(qz−ω(q)t)<br />

(9.26)<br />

∆v(z,t) ∝ ∆v(z) e i(qz−ω(q)t)<br />

(9.27)<br />

To f<strong>in</strong>d the dispersion ω(q), we l<strong>in</strong>earize Eqs.(9.17,9.18) <strong>in</strong> ∆n(z,t), ∆v(z,t) with Vext =0.<br />

The result<strong>in</strong>g equations read<br />

∂<br />

m<br />

∆n(z,t)+<br />

∂t m∗ k<br />

¯n∂z∆v(z,t)+<br />

(¯n) m∗ µ(¯n) ∂z∆n(z,t) =0, (9.28)<br />

<br />

∂<br />

1 ∂µopt<br />

∆v(z,t)+ ∂z∆n(z,t)+<br />

∂t m ∂n ¯n<br />

k<br />

m∗ µ(¯n) ∂z∆v(z,t) =0, (9.29)<br />

where m∗ <strong>and</strong> m∗ µ are the effective masses obta<strong>in</strong>ed from the lowest energy <strong>and</strong> chemical<br />

potential Bloch b<strong>and</strong> respectively (see Eqs.(6.19,6.23)) <strong>and</strong> we have neglected terms of order<br />

higher than O(k). Insert<strong>in</strong>g (9.26,9.27) <strong>in</strong>to (9.28,9.29), we f<strong>in</strong>d<br />

ω(q) = ¯h|k|<br />

m∗ 1<br />

|q|± √ |q| , (9.30)<br />

µ(¯nM) κm∗ where κ is the groundstate compressibility (see Eq.(5.11)). Accord<strong>in</strong>g to this result, sound<br />

waves <strong>in</strong> a groundstate condensate (k =0)travelatvelocity<br />

c = 1<br />

√ . (9.31)<br />

κm∗ This expression <strong>and</strong> <strong>in</strong> particular the implied dependence of the sound velocity on average<br />

density <strong>and</strong> on lattice depth has been discussed above <strong>in</strong> section 7.4. On the other h<strong>and</strong>, if<br />

the condensate carry<strong>in</strong>g the sound wave has non-zero quasi-momentum ¯hk, Eq.(9.30) yields<br />

the sound velocity<br />

ck = c ± ¯h|k|<br />

m ∗ µ<br />

, (9.32)<br />

where the plus- <strong>and</strong> m<strong>in</strong>us-sign hold for k parallel <strong>and</strong> anti-parallel q respectively. This expression<br />

has been discussed above <strong>in</strong> chapter 7.4 (see Eq.(7.53)).<br />

The result (9.30) describes the excitation energy spectrum associated with small perturbations<br />

of a Bloch state condensate at any lattice depth <strong>in</strong> the limit of small q <strong>and</strong> k. Us<strong>in</strong>g the<br />

set of hydrodynamic equations (9.24,9.25) valid also for large currents, the spectrum for small<br />

q <strong>and</strong> any k has been obta<strong>in</strong>ed <strong>in</strong> [107]. The result reads [107, 125]<br />

<br />

n<br />

ck =<br />

m∗ ∂µ(k)<br />

(k) ∂n ±<br />

<br />

<br />

<br />

∂µ(k) <br />

<br />

∂k , (9.33)<br />

where m ∗ (k) is the generalized effective mass (6.22) with j =1.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!