15.04.2013 Views

Bose-Einstein Condensates in Rotating Traps and Optical ... - BEC

Bose-Einstein Condensates in Rotating Traps and Optical ... - BEC

Bose-Einstein Condensates in Rotating Traps and Optical ... - BEC

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

7.3 Tight b<strong>in</strong>d<strong>in</strong>g regime of the lowest Bogoliubov b<strong>and</strong> 93<br />

b<strong>in</strong>d<strong>in</strong>g regime, the situation is simpler <strong>in</strong> the case of the lowest b<strong>and</strong>: S<strong>in</strong>ce the excitation<br />

energies go to zero as s is <strong>in</strong>creased, the Bogoliubov amplitudes are approximately proportional<br />

to the condensate wavefunction of the groundstate. So we set<br />

uq(z) = 1<br />

√ Uqϕq(z) (7.22)<br />

Nw<br />

vq(z) = 1<br />

√ Vqϕq(z) , (7.23)<br />

Nw<br />

where Uq <strong>and</strong> Vq are numbers that depend on the quasi-momentum q. The normalization<br />

condition (7.8) implies that<br />

|Uq| 2 −|Vq| 2 =1. (7.24)<br />

Exp<strong>and</strong><strong>in</strong>g the condensate wavefunction <strong>in</strong> its Wannier basis we can write<br />

uq(z) = 1 <br />

√ Uq<br />

Nw<br />

l<br />

<br />

fl(x)e iqld<br />

(7.25)<br />

vq(z) = 1<br />

√ Vq fl(x)e<br />

Nw l<br />

iqld . (7.26)<br />

Our discussion of elementary excitations <strong>in</strong> the tight b<strong>in</strong>d<strong>in</strong>g regime of the lowest Bogoliubov<br />

b<strong>and</strong> will be based on these expressions for the Bogoliubov amplitudes. We presuppose the<br />

lowest Bloch b<strong>and</strong> to be with<strong>in</strong> the tight b<strong>in</strong>d<strong>in</strong>g regime so that only next-neighbour overlap<br />

has to be considered.<br />

Lowest Bogoliubov b<strong>and</strong><br />

To solve for the lowest Bogoliubov b<strong>and</strong> ¯hω(q), we first add <strong>and</strong> subtract the two equations<br />

(7.14,7.15) yield<strong>in</strong>g two coupled equations for uq + vq <strong>and</strong> uq − vq<br />

L1(uq + vq) =¯hω(q)(uq − vq) , (7.27)<br />

L3(uq − vq) =¯hω(q)(uq + vq) , (7.28)<br />

where<br />

L1 = − ¯h2 ∂<br />

2m<br />

2<br />

∂z2 + sER s<strong>in</strong> 2<br />

<br />

πz<br />

+ dgn|ϕ(z)|<br />

d<br />

2 − µ, (7.29)<br />

L3 = − ¯h2 ∂<br />

2m<br />

2<br />

∂z2 + sER s<strong>in</strong> 2<br />

<br />

πz<br />

+3dgn|ϕ(z)|<br />

d<br />

2 − µ. (7.30)<br />

Elim<strong>in</strong>at<strong>in</strong>g uq + vq or uq − vq from (7.27,7.28), we obta<strong>in</strong><br />

The matrix elements of L1 <strong>and</strong> L3 take the form<br />

L3 L1(uq + vq) =¯h 2 ω(q) 2 (uq + vq) , (7.31)<br />

L1 L3(uq − vq) =¯h 2 ω(q) 2 (uq − vq) . (7.32)<br />

〈fl|L1|fl〉 = δ, 〈fl|L1|fl±1〉 = − δ<br />

, (7.33)<br />

2<br />

<br />

〈fl|L3|fl〉 =3δ− 2δµ +2gnd dzf 4 (z) , 〈fl|L3|fl±1〉 = δ<br />

2 − δµ . (7.34)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!