15.04.2013 Views

Bose-Einstein Condensates in Rotating Traps and Optical ... - BEC

Bose-Einstein Condensates in Rotating Traps and Optical ... - BEC

Bose-Einstein Condensates in Rotating Traps and Optical ... - BEC

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

9.5 Small amplitude collective oscillations <strong>in</strong> the presence of harmonic trapp<strong>in</strong>g 123<br />

To f<strong>in</strong>d the frequencies ω, we l<strong>in</strong>earize Eqs.(9.38,9.39) <strong>in</strong> ∆n(r,t), ∆v(r,t)<br />

∂<br />

m<br />

∆n + ∂x(∆v¯nM)+∂y(∆v¯nM)+<br />

∂t m∗ ∂z (∆vz ¯nM) =0. (9.42)<br />

m ∂<br />

∆v +˜g∇∆n =0,<br />

∂t<br />

(9.43)<br />

where we have made use of (9.36).<br />

<strong>in</strong>sert<strong>in</strong>g (9.43), we obta<strong>in</strong><br />

After differentiat<strong>in</strong>g (9.42) with respect to time <strong>and</strong><br />

∂2 <br />

˜g¯nM<br />

∆n − ∂x<br />

∂t2 m ∂x∆n<br />

<br />

˜g¯nM<br />

− ∂y<br />

m ∂y∆n<br />

<br />

Us<strong>in</strong>g (9.36) this equation can be rewritten <strong>in</strong> the form<br />

∂2 <br />

µ − µgn=0 − Vext<br />

µ − µgn=0 − Vext<br />

∆n − ∂x<br />

∂x∆n − ∂y<br />

∂y∆n<br />

∂t2 m<br />

m<br />

− m<br />

<br />

˜g¯nM<br />

∂z<br />

m∗ m ∂z∆n<br />

<br />

=0. (9.44)<br />

− m<br />

<br />

µ − µgn=0 − Vext<br />

∂z<br />

∂z∆n =0.<br />

m∗ m<br />

(9.45)<br />

Its form is affected by the lattice only through the appearance of the factor m/m∗ <strong>and</strong> the<br />

irrelevant constant µgn=0. This formal difference can be elim<strong>in</strong>ated by replac<strong>in</strong>g the trap<br />

frequency ωz, thez-coord<strong>in</strong>ate <strong>and</strong> the chemical potential µ by<br />

<br />

m<br />

˜ωz =<br />

m∗ ωz , (9.46)<br />

<br />

m∗ ˜z = z, (9.47)<br />

m<br />

˜µ = µ − µgn=0 . (9.48)<br />

Us<strong>in</strong>g these new quantities we can rewrite Eq.(9.45) <strong>in</strong> the form<br />

∂2 <br />

˜µ − Vext<br />

˜<br />

∆n − ∂x<br />

∂t2 m ∂x∆n<br />

<br />

˜µ − Vext<br />

˜<br />

− ∂y<br />

m ∂y∆n<br />

<br />

− ∂˜z<br />

˜µ − ˜ Vext<br />

m ∂˜z∆n<br />

where ˜ Vext is a harmonic potential with frequency ˜ωz along the ˜z-direction<br />

˜Vext = m<br />

2<br />

<br />

=0, (9.49)<br />

<br />

ω 2 xx 2 + ω 2 yy 2 +˜ω 2 z ˜z 2<br />

. (9.50)<br />

At this stage, the differential equation (9.49) is formally identical with the one describ<strong>in</strong>g small<br />

amplitude collective oscillations of a condensate with chemical potential ˜µ <strong>in</strong> a harmonic trap<br />

with frequencies ωx, ωy, ˜ωz without a lattice be<strong>in</strong>g superimposed to it.<br />

Frequencies of small amplitude collective oscillations<br />

The above derivation has shown that the condensate <strong>in</strong> the comb<strong>in</strong>ed potential of harmonic<br />

trap <strong>and</strong> lattice oscillates as if there was no lattice <strong>and</strong> as if the harmonic trap frequency along<br />

the z-direction was ˜ωz = m/m ∗ ωz <strong>in</strong>stead of ωz <strong>and</strong> the chemical potential ˜µ = µ − µgn=0<br />

<strong>in</strong>stead of µ. This conclusion allows us to apply results obta<strong>in</strong>ed for a purely harmonically<br />

trapped condensate to the case when a lattice is added (see [1] chapter 12.2-12.3 <strong>and</strong> references<br />

there<strong>in</strong>): We obta<strong>in</strong> the correct frequency by replac<strong>in</strong>g ωz by ˜ωz <strong>and</strong> µ by ˜µ.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!