15.04.2013 Views

Bose-Einstein Condensates in Rotating Traps and Optical ... - BEC

Bose-Einstein Condensates in Rotating Traps and Optical ... - BEC

Bose-Einstein Condensates in Rotating Traps and Optical ... - BEC

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

76 Stationary states of a <strong>BEC</strong> <strong>in</strong> an optical lattice<br />

As a consequence of the displacement property of the Wannier functions (6.27), we have<br />

L/2<br />

f<br />

−L/2<br />

3 L/2<br />

j (z)fj(z ± d)dz = fj(z)f<br />

−L/2<br />

3 j (z ± d)dz , (6.28)<br />

<strong>and</strong> we obta<strong>in</strong> the result<br />

<br />

L/2<br />

εj(k) = fj(z) −<br />

−L/2<br />

¯h2 ∂<br />

2m<br />

2<br />

<br />

2 πz<br />

+ sERs<strong>in</strong> +<br />

∂z2 d<br />

gnd<br />

2 f 2 <br />

j (z) fj(z)dz<br />

<br />

L/2<br />

+2cos(kd) fj(z) −<br />

−L/2<br />

¯h2 ∂<br />

2m<br />

2<br />

<br />

2 πz<br />

+ sERs<strong>in</strong> +2gndf<br />

∂z2 d<br />

2 <br />

j (z) fj(z − d)dz<br />

= ε0j − δj cos(kd) , (6.29)<br />

where <strong>in</strong> the last step we have def<strong>in</strong>ed the quantities<br />

ε0j =<br />

L/2<br />

<br />

fj(z) − ¯h2 ∂<br />

2m<br />

2<br />

<br />

2 πz<br />

+ sERs<strong>in</strong> +<br />

∂z2 d<br />

gnd<br />

2 f 2 <br />

j (z) fj(z)dz , (6.30)<br />

−L/2<br />

L/2<br />

δj = −2<br />

−L/2<br />

<br />

fj(z) − ¯h2 ∂<br />

2m<br />

2<br />

2<br />

+ sERs<strong>in</strong><br />

∂z2 <br />

πz<br />

+2gndf<br />

d<br />

2 <br />

j (z) fj(z − d)dz .<br />

(6.31)<br />

Comparison of Eq.(6.29) with Eq.(4.29) reveals that <strong>in</strong> the tight b<strong>in</strong>d<strong>in</strong>g regime, the energy<br />

b<strong>and</strong>s of a condensate have the same form as <strong>in</strong> the s<strong>in</strong>gle particle case. The first term ε0j<br />

is an off-set, while the second describes the formation of a b<strong>and</strong> of height 2δj <strong>and</strong> a cos(kd)dependence<br />

on the quasi-momentum. In particular, expression (6.31) generalizes the def<strong>in</strong>ition<br />

of the tunnel<strong>in</strong>g parameter (4.30) to a condensate <strong>in</strong> presence of <strong>in</strong>teractions.<br />

In contrast to the s<strong>in</strong>gle particle case, the off-set ε0j <strong>and</strong> the tunnel<strong>in</strong>g parameter δj do not<br />

only depend on lattice depth, but also on density. This density-dependence shows up <strong>in</strong> two<br />

ways: implicitly through the density-dependence of the Wannier function fj, which can often<br />

be neglected, <strong>and</strong> explicitly through the <strong>in</strong>teraction term.<br />

We can apply the same considerations to the calculation of the chemical potential <strong>in</strong> the<br />

tight b<strong>in</strong>d<strong>in</strong>g regime. In this way, we obta<strong>in</strong><br />

d/2<br />

µj(k) = ϕ<br />

−d/2<br />

∗ <br />

jk(z) − ¯h2 ∂<br />

2m<br />

2<br />

<br />

2 πz<br />

+ sERs<strong>in</strong> + gnd|ϕjk(z)|<br />

∂z2 d<br />

2<br />

<br />

ϕjk(z)dz<br />

= µ0j − δµ,j cos(kd) , (6.32)<br />

where we have def<strong>in</strong>ed the quantities<br />

µ0j =<br />

L/2<br />

−L/2<br />

<br />

fj(z) − ¯h2 ∂<br />

2m<br />

2<br />

<br />

2 πz<br />

+ sERs<strong>in</strong> + gndf<br />

∂z2 d<br />

2 <br />

j (z) fj(z)dz , (6.33)<br />

<br />

fj(z) − ¯h2 ∂<br />

2m<br />

2<br />

<br />

2 πz<br />

+ sERs<strong>in</strong> +4gndf<br />

∂z2 d<br />

2 <br />

j (z) fj(z − d)dz . (6.34)<br />

L/2<br />

δµ,j = −2<br />

−L/2

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!