15.04.2013 Views

Bose-Einstein Condensates in Rotating Traps and Optical ... - BEC

Bose-Einstein Condensates in Rotating Traps and Optical ... - BEC

Bose-Einstein Condensates in Rotating Traps and Optical ... - BEC

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

170 Condensate fraction<br />

we obta<strong>in</strong><br />

∆Ntot<br />

Ntot<br />

Because sm<strong>in</strong> =2/Nw ≪ 1, weexp<strong>and</strong><br />

∆Ntot<br />

Ntot<br />

= 1<br />

1<br />

ds<br />

N sm<strong>in</strong><br />

1 1<br />

√<br />

4<br />

πs δκ s<strong>in</strong>(<br />

= 1 1 2<br />

N 4 π √ δκ arctanh<br />

<br />

cos<br />

= 1 1<br />

N 4<br />

= 1<br />

N<br />

<strong>and</strong> <strong>in</strong>sert<strong>in</strong>g sm<strong>in</strong> =2/Nw we f<strong>in</strong>ally obta<strong>in</strong><br />

∆Ntot<br />

Ntot<br />

2 )<br />

<br />

πsm<strong>in</strong><br />

2<br />

. (12.69)<br />

2<br />

π √ δκ arctanh<br />

<br />

1 − 1<br />

8 π2s 2 <br />

m<strong>in</strong><br />

1<br />

2π √ δκ ln<br />

<br />

4<br />

. (12.70)<br />

πsm<strong>in</strong><br />

= 1<br />

N<br />

1<br />

2π √ δκ ln<br />

<br />

2Nw<br />

. (12.71)<br />

π<br />

Us<strong>in</strong>g the relation between δ <strong>and</strong> the effective mass (6.41) <strong>and</strong> the relation between sound<br />

velocity, compressibility <strong>and</strong> effective mass (7.48) this result can also be written <strong>in</strong> the form<br />

with<br />

∆Ntot<br />

Ntot<br />

= ν ln<br />

<br />

2Nw<br />

, (12.72)<br />

π<br />

ν = m∗cd . (12.73)<br />

2π¯hN<br />

Hence, the quantum depletion can be made larger by <strong>in</strong>creas<strong>in</strong>g the lattice depth s (thereby<br />

<strong>in</strong>creas<strong>in</strong>g m ∗ c), decreas<strong>in</strong>g the number of particles per well N, or by <strong>in</strong>creas<strong>in</strong>g the number of<br />

wells Nw. Yet, one can easily check that, unless N is of the order of unity or m ∗ is extremely<br />

large, the value of ν always rema<strong>in</strong>s very small. To illustrate this po<strong>in</strong>t we plot <strong>in</strong> Fig.12.2 the<br />

quantity Nν as a function of the lattice depth s as obta<strong>in</strong>ed for gn =0.5ER, show<strong>in</strong>g that<br />

for a small number of particles per site the depletion (12.72) is large.<br />

Note that <strong>in</strong> a deep lattice, we have c = ˜gn/m ∗ <strong>and</strong> hence the depletion scales like ã 1/2 .<br />

This should be compared with the ã <strong>and</strong> ã 3/2 dependence <strong>in</strong> the coherent array of 2D discs<br />

(12.62) <strong>and</strong> <strong>in</strong> the shallow lattice (12.49) respectively.<br />

Result (12.72,12.73) has a form analogous to the quantum depletion (12.43) of 1D uniform<br />

gas. Yet, recall that strictly speak<strong>in</strong>g (12.73) was obta<strong>in</strong>ed <strong>in</strong> the tight b<strong>in</strong>d<strong>in</strong>g regime <strong>and</strong><br />

assum<strong>in</strong>g that δ/κ −1 ≪ 1. An <strong>in</strong>terest<strong>in</strong>g difference is given by the fact that the heal<strong>in</strong>g<br />

length ξ enter<strong>in</strong>g as relevant length scale <strong>in</strong> the argument of the logarithmic function <strong>in</strong> the<br />

case of the uniform system is replaced by the <strong>in</strong>terwell spac<strong>in</strong>g d <strong>in</strong> the case of a deep lattice.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!