15.04.2013 Views

Bose-Einstein Condensates in Rotating Traps and Optical ... - BEC

Bose-Einstein Condensates in Rotating Traps and Optical ... - BEC

Bose-Einstein Condensates in Rotating Traps and Optical ... - BEC

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

10.2 Lowest Bogoliubov b<strong>and</strong> 137<br />

<br />

µl<br />

∆Sl<br />

˙ = −<br />

<br />

δµ<br />

+<br />

¯h ¯h<br />

<br />

1 ∂µl<br />

−<br />

¯h ∂nl<br />

nl=n<br />

∆nl +<br />

nl=n<br />

<br />

l ′ =l+1,l−1<br />

δ +2n ∂δ<br />

∂n<br />

4n¯h<br />

∂δ δ − 2n ∂n<br />

∆nl ′ −<br />

4n¯h ∆nl<br />

<br />

. (10.20)<br />

To obta<strong>in</strong> (10.19) we have taken the value of δl,l′ at equilibrium s<strong>in</strong>ce the dependence on ∆Sl<br />

is of first order. Instead, to get Eq.(10.20) one has to exp<strong>and</strong> δ l,l′<br />

µ to first order <strong>in</strong> the density<br />

fluctuations ∆nl<br />

δ l,l′<br />

µ ≈ δµ + ∂δl,l′<br />

<br />

<br />

µ <br />

∆nl +<br />

∂nl <br />

nl=n<br />

∂δl,l′ µ<br />

∂nl ′<br />

<br />

<br />

<br />

∆nl<br />

<br />

nl=n<br />

′<br />

= δµ + 3 ∂δ<br />

2 ∂n ∆nl + 1 ∂δ<br />

∆nl ′ , (10.21)<br />

2 ∂n<br />

where <strong>in</strong> the last step we have neglected terms <strong>in</strong>volv<strong>in</strong>g ∂f/∂n, as done previously <strong>in</strong> sections<br />

6.2 <strong>and</strong> 7.3. Tak<strong>in</strong>g the derivative of (10.20) with respect to time <strong>and</strong> <strong>and</strong> <strong>in</strong>sert<strong>in</strong>g (10.19)<br />

we f<strong>in</strong>d<br />

<br />

∆Sl<br />

¨<br />

1 ∂µl nδ<br />

= −<br />

¯h ∂nl nl=n ¯h (2∆Sl − ∆Sl+1 − ∆Sl−1)<br />

+ nδ<br />

¯h 2<br />

<br />

∂δ δ +2n∂n [(2∆Sl+1 − ∆Sl+2 − ∆Sl)+(2∆Sl−1−∆Sl − ∆Sl−2)]<br />

4n<br />

<br />

∂δ δ − 2n ∂n (2∆Sl − ∆Sl+1 − ∆Sl−1) . (10.22)<br />

4n<br />

−2 nδ<br />

¯h 2<br />

This equation is solved by<br />

with<br />

<br />

¯hω(q) = 2δ s<strong>in</strong>2 <br />

qd<br />

2<br />

2<br />

∆Sl ∝ e i(lqd−ω(q)t) , (10.23)<br />

δ +2n ∂δ<br />

∂n<br />

<br />

s<strong>in</strong> 2<br />

<br />

qd<br />

+2n<br />

2<br />

∂µl<br />

∂n<br />

<br />

∂δ<br />

− 4n . (10.24)<br />

∂n<br />

Recall<strong>in</strong>g the tight b<strong>in</strong>d<strong>in</strong>g expression for the <strong>in</strong>verse compressibility (see Eq.(6.43)) we can<br />

rewrite (10.24) <strong>in</strong> the form<br />

¯hω(q) =<br />

<br />

2δ s<strong>in</strong> 2<br />

<br />

qd<br />

2<br />

2<br />

δ +2n ∂δ<br />

∂n<br />

<br />

s<strong>in</strong> 2<br />

<br />

qd<br />

+2κ<br />

2<br />

−1<br />

<br />

, (10.25)<br />

<strong>in</strong> agreement with the result (7.38) obta<strong>in</strong>ed from the solution of the Bogoliubov equations<br />

(7.14,7.15).<br />

It is <strong>in</strong>terest<strong>in</strong>g to note that if we <strong>in</strong>itially set √ nlnl ′ = nl <strong>in</strong> Eq.(10.11) we obta<strong>in</strong> the<br />

result<br />

¯hω(q) =2 √ δκ−1 <br />

<br />

<br />

s<strong>in</strong> <br />

qd <br />

2<br />

(10.26)<br />

for the dispersion of small groundstate perturbations. This proves that the first term <strong>in</strong><br />

the brackets of Eq.(10.25) has its physical orig<strong>in</strong> <strong>in</strong> the fluctuations of the site occupations<br />

occurr<strong>in</strong>g on a few-sites length scale which are excluded when sett<strong>in</strong>g √ nlnl ′ = nl. Note that

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!