15.04.2013 Views

Bose-Einstein Condensates in Rotating Traps and Optical ... - BEC

Bose-Einstein Condensates in Rotating Traps and Optical ... - BEC

Bose-Einstein Condensates in Rotating Traps and Optical ... - BEC

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

12.2 Uniform case 161<br />

The Bogoliubov amplitudes must comply with the normalization condition<br />

<br />

dz<br />

<br />

dx<br />

<br />

dy |uq,px,py(r)| 2 −|vq,px,py(r)| 2<br />

=1. (12.10)<br />

Eq. (12.1) adquately describes the quantum depletion provided<br />

∆Ntot<br />

Ntot<br />

Otherwise it is necessary to go beyond Bogoliubov theory.<br />

12.2 Uniform case<br />

≪ 1 . (12.11)<br />

At lattice depth s =0, Eq. (12.1) yields the quantum depletion of the weakly <strong>in</strong>teract<strong>in</strong>g<br />

uniform <strong>Bose</strong> gas. In this case the sum <br />

j,q with q belong<strong>in</strong>g to the first Brillou<strong>in</strong> zone can<br />

be replaced by <br />

q with<br />

q = 2π<br />

ν,<br />

L<br />

ν=0, ±1, ±2,... . (12.12)<br />

The correctly normalized Bogoliubov amplitudes are given by<br />

e<br />

uq,px,py(r) =Uq,px,py<br />

i(pxx+pyy)/¯h<br />

L3/2 e iqz , (12.13)<br />

e<br />

vq,px,py(r) =Vq,px,py<br />

i(pxx+pyy)/¯h<br />

L3/2 e iqz ,<br />

with<br />

(12.14)<br />

Uq,px,py =<br />

Vq,px,py =<br />

p2 2m +¯hωuni<br />

<br />

p2¯hωuni 2 2m<br />

p2 2m − ¯hωuni<br />

<br />

p2¯hωuni 2 2m<br />

, (12.15)<br />

, (12.16)<br />

where p2 = p2 x + p2 y +¯h 2 q2 <strong>and</strong> ω is the dispersion relation of the elementary excitations<br />

<br />

p<br />

¯hωuni =<br />

2 <br />

p2 2m 2m +2gn<br />

<br />

. (12.17)<br />

We <strong>in</strong>sert (12.13,12.14) <strong>in</strong>to Eq.(12.1). To obta<strong>in</strong> the result <strong>in</strong> the thermodynamic limit<br />

Ntot, L→∞,n= const. we make use of the cont<strong>in</strong>uum approximation<br />

<br />

→<br />

px,py,q<br />

L3<br />

(2π) 3<br />

1<br />

¯h 2<br />

<br />

dpx<br />

<br />

dpy dq . (12.18)<br />

This leads to<br />

∆Ntot<br />

Ntot<br />

= 1 L<br />

Ntot<br />

3<br />

(2π) 3<br />

1<br />

¯h 2<br />

<br />

dpx dpy dq|Vq,px,py| 2<br />

= 1 L<br />

Ntot<br />

3<br />

(2π) 3<br />

1<br />

¯h 2<br />

∞<br />

4πp<br />

0<br />

2 dp 1<br />

⎡<br />

p<br />

⎣<br />

2<br />

2<br />

4g2n2m +1/2<br />

<br />

p2 4g2n2m (<br />

p2 4g2n2m +1)<br />

⎤<br />

− 1⎦<br />

. (12.19)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!