15.04.2013 Views

Bose-Einstein Condensates in Rotating Traps and Optical ... - BEC

Bose-Einstein Condensates in Rotating Traps and Optical ... - BEC

Bose-Einstein Condensates in Rotating Traps and Optical ... - BEC

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

12.4 Tight b<strong>in</strong>d<strong>in</strong>g regime 167<br />

3D thermodynamic limit<br />

An analytic expression for (12.57) can be found <strong>in</strong> the thermodynamic limit employ<strong>in</strong>g the<br />

cont<strong>in</strong>uum approximation<br />

<br />

px,py,q<br />

→ L3<br />

(2π) 3<br />

1<br />

¯h 2<br />

<br />

dpx<br />

The quantum depletion <strong>in</strong> the tight b<strong>in</strong>d<strong>in</strong>g regime then becomes<br />

∆Ntot<br />

=<br />

Ntot<br />

1 L<br />

Ntot<br />

3<br />

(2π) 3<br />

1<br />

2 ×<br />

¯h<br />

⎡<br />

π/d ∞ 1<br />

× dq 2πp⊥dp⊥ ⎣<br />

−π/d 0<br />

2 p<br />

(<br />

2 ⊥<br />

2κ−12m <br />

π/d<br />

dpy dq . (12.58)<br />

−π/d<br />

p 2 ⊥<br />

2κ −1 2m<br />

+1/2+ δ<br />

κ −1 s<strong>in</strong> 2 ( qd<br />

2 )<br />

δ + κ−1 s<strong>in</strong>2 ( qd<br />

2 ))(<br />

p2 ⊥<br />

2κ−12m The <strong>in</strong>tegral can be solved analytically <strong>and</strong> the f<strong>in</strong>al result reads<br />

∆Ntot<br />

Ntot<br />

= π 1<br />

4 nd3 κ −1<br />

ER<br />

+ δ<br />

κ −1 s<strong>in</strong> 2 ( qd<br />

2 )+1)<br />

<br />

δ<br />

G<br />

κ−1 <br />

, (12.60)<br />

where the function G(b), givenby<br />

G(b) = 1<br />

2 −<br />

√<br />

b b 1<br />

+ −<br />

π 2 π arctan(√b)(1 + b)<br />

is depicted <strong>in</strong> Fig.12.1.<br />

(12.61)<br />

From Eq.(12.60), one recovers the result (12.49) <strong>in</strong> the limit δ/κ−1 →∞, reflect<strong>in</strong>g the<br />

fact that the case of a shallow lattice is approached by <strong>in</strong>creas<strong>in</strong>g δ. Yet, this limit is only<br />

of academic <strong>in</strong>terest, s<strong>in</strong>ce <strong>in</strong> the tight b<strong>in</strong>d<strong>in</strong>g regime where (12.60) applies, the ratio δ/κ−1 becomes large only if <strong>in</strong>teractions are vanish<strong>in</strong>gly small. For example, for gn =0.02ER <strong>and</strong><br />

s = 10 one still f<strong>in</strong>ds δ/κ−1 ≈ 1. Thus, <strong>in</strong> the tight b<strong>in</strong>d<strong>in</strong>g regime the ratio δ/κ−1 is<br />

usually small. It goes to zero as s →∞. Moreover, the <strong>in</strong>compressibility κ−1 approaches the<br />

expression κ−1 =˜gn. Hence, <strong>in</strong> the large-s limit the depletion (12.60) converges to<br />

∆Ntot<br />

Ntot<br />

= ã<br />

, (12.62)<br />

d<br />

where, as previously, we have def<strong>in</strong>ed an effective scatter<strong>in</strong>g length ã through the relation<br />

˜g =4π¯h 2 ã/m. Note that the dependence on the <strong>in</strong>teraction strength is stronger <strong>in</strong> this case<br />

than <strong>in</strong> a shallow lattice (see Eq.(12.49)), s<strong>in</strong>ce the depletion scales like ã rather than ã 3/2 .<br />

The result (12.62) co<strong>in</strong>cides with the thermodynamic limit quantum depletion (12.33) of a<br />

disc shaped uniform system with strong axial harmonic conf<strong>in</strong>ement, freez<strong>in</strong>g the wavefunction<br />

to a gaussian of width σ. The l<strong>in</strong>k between the result for the disc (12.33) <strong>and</strong> the lattice result<br />

(12.62) is established by not<strong>in</strong>g that with<strong>in</strong> the gaussian approximation to the Wannier function<br />

<strong>in</strong> a deep lattice we f<strong>in</strong>d ã = ad/ √ 2πσ (see section 6.2, <strong>in</strong> particular Eq.(6.54)). Thus, the<br />

⎤<br />

− 1⎦<br />

.<br />

(12.59)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!