15.04.2013 Views

Bose-Einstein Condensates in Rotating Traps and Optical ... - BEC

Bose-Einstein Condensates in Rotating Traps and Optical ... - BEC

Bose-Einstein Condensates in Rotating Traps and Optical ... - BEC

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

160 Condensate fraction<br />

12.1 Quantum depletion with<strong>in</strong> Bogoliubov theory<br />

Let us consider the problem <strong>in</strong> a 3D box of size L <strong>in</strong> x, y-direction <strong>and</strong> an optical lattice<br />

with Nw sites oriented along z Note that the quantum depletion of the condensate has been<br />

calculated <strong>in</strong> [123, 124] for different geometries. The quantum numbers of the elementary<br />

excitations are the b<strong>and</strong> <strong>in</strong>dex j <strong>and</strong> the quasi-momentum q along the z direction <strong>and</strong> the<br />

momenta px <strong>and</strong> py <strong>in</strong> the transverse directions.<br />

With<strong>in</strong> the framework of Bogoliubov theory, the quantum depletion of the condensate is<br />

given by<br />

∆Ntot<br />

=<br />

Ntot<br />

1 <br />

<br />

dz dx dy |vj,q,px,py(r)|<br />

Ntot j q,px,py,|p|=0<br />

2 , (12.1)<br />

where Ntot denotes the total number of atoms, ∆Ntot is the number of non-condensed parti-<br />

cles, |p| =<br />

<br />

p 2 x + p 2 y +¯h 2 q 2 <strong>and</strong> vj,q,px,py(r) are the Bogliubov v-amplitudes of the elementary<br />

excitations. The sum runs over all b<strong>and</strong>s j, over the quasi-momenta q <strong>in</strong> the first Brillou<strong>in</strong><br />

zone <strong>and</strong> the momenta of elementary excitations <strong>in</strong> the transverse directions px,py allowed by<br />

the periodic boundary conditions<br />

q = 2π<br />

ν,<br />

Nwd<br />

ν=0, ±1, ±2, ..., ±Nw ,<br />

2<br />

(12.2)<br />

px,py =¯h 2π<br />

ν,<br />

L<br />

ν=0, ±1, ±2, ... . (12.3)<br />

The Bogoliubov amplitudes vj,q,px,py(r) <strong>in</strong> Eq. (12.1) solve the Bogoliubov equations<br />

− ¯h2<br />

2m ∇2 + sER s<strong>in</strong> 2<br />

− ¯h2<br />

2m ∇2 + sER s<strong>in</strong> 2<br />

<br />

πz<br />

d<br />

<br />

πz<br />

d<br />

<br />

+2dgn| ˜ϕ(z)| 2 <br />

− µ ujqpxpy(r)+gnd˜ϕ 2 vjqpxpy(r) =¯hωj(q)ujqpxpy (12.4)<br />

<br />

+2dgn| ˜ϕ(z)| 2 − µ<br />

<br />

vjqpxpy(r)+gnd ˜ϕ ∗2 ujqpxpy(r) =−¯hωj(q)vjqpxpy .(12.5)<br />

They can be obta<strong>in</strong>ed from the three-dimensional time-dependent GPE<br />

i¯h ∂Ψ(r,t)<br />

<br />

= −<br />

∂t<br />

¯h2<br />

2m ∇2 + sER s<strong>in</strong> 2<br />

<br />

πz<br />

+ g |Ψ(r,t)|<br />

d<br />

2<br />

<br />

Ψ(r,t) , (12.6)<br />

where the order parameter Ψ fulfills the normalization condition<br />

<br />

dr |Ψ(r,t)| 2 = Ntot , (12.7)<br />

by consider<strong>in</strong>g small time-dependent perturbations δΨ(r,t) of the groundstate Ψ0(r)<br />

where<br />

Ψ(r,t)=e −iµt/¯h [Ψ0(r)+δΨ(r,t)] , (12.8)<br />

δΨ(r,t)=uσ(r)e −iωσt + v ∗ σ(r)e iωσt<br />

as exemplified <strong>in</strong> section 7 for the case px = py =0.<br />

(12.9)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!