15.04.2013 Views

Bose-Einstein Condensates in Rotating Traps and Optical ... - BEC

Bose-Einstein Condensates in Rotating Traps and Optical ... - BEC

Bose-Einstein Condensates in Rotating Traps and Optical ... - BEC

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

164 Condensate fraction<br />

where<br />

g1d = g<br />

,<br />

L2 (12.36)<br />

n1d = nL 2 , (12.37)<br />

are the effective 1D coupl<strong>in</strong>g constant <strong>and</strong> 1D density <strong>in</strong> a system with radial extension L <strong>and</strong><br />

3D density n whose motion is frozen <strong>in</strong> the radial direction. Suppos<strong>in</strong>g that the system is very<br />

long, we make use of the cont<strong>in</strong>uum approximation <strong>in</strong> the z-direction. This yields<br />

∆Ntot<br />

Ntot<br />

= 1<br />

Ntot<br />

L<br />

2π 2<br />

∞<br />

dq<br />

qm<strong>in</strong>=2π/L<br />

1<br />

2<br />

We rewrite this expression <strong>in</strong> the form<br />

∆Ntot<br />

Ntot<br />

= 1<br />

Ntot<br />

⎡<br />

⎢<br />

⎣<br />

L 1<br />

2π ξ 2<br />

∞<br />

dq<br />

2πξ/L<br />

1<br />

<br />

2<br />

¯h 2q2 2m + g1dn1d<br />

2 ¯h q2 2 ¯h q2 2m 2m +2g1dn1d<br />

ξ 2 q 2 +1<br />

ξ 2 q 2 (ξ 2 q 2 +2) − 1<br />

⎤<br />

⎥<br />

− 1⎥<br />

⎦ . (12.38)<br />

<br />

, (12.39)<br />

with the heal<strong>in</strong>g length ξ = √ 2mg1dn1d. The <strong>in</strong>tegral can be solved analytically yield<strong>in</strong>g<br />

∆Ntot<br />

Ntot<br />

= 1<br />

⎡ <br />

L 1<br />

⎣−<br />

Ntot 2π ξ<br />

4π<br />

<br />

<br />

ξ 1 <br />

+2+2π + √ arctanh<br />

L2 L 2<br />

2 ξ2<br />

Us<strong>in</strong>g ξ ≪ L this expression can be recast <strong>in</strong> the form<br />

∆Ntot<br />

Ntot<br />

= 1<br />

<br />

L 1 1<br />

2 ξ2<br />

√ arctanh 1 − 4π<br />

Ntot 2π ξ 2 4L2 =<br />

<br />

1<br />

√ <br />

L 1 1 2L<br />

√ ln<br />

Ntot 2π ξ 2 πξ<br />

Us<strong>in</strong>g the formula c = g1dn1d/m for the sound velocity <strong>and</strong> def<strong>in</strong><strong>in</strong>g<br />

we rewrite this result <strong>in</strong> the form<br />

∆Ntot<br />

Ntot<br />

1<br />

1+4π 2 ξ 2<br />

2L 2<br />

⎤<br />

⎦ . (12.40)<br />

(12.41)<br />

ν = mc<br />

. (12.42)<br />

2π¯hn1d<br />

= ν ln<br />

√ <br />

2L<br />

πξ<br />

(12.43)<br />

This result is valid provided that the depletion is small which can be ensured by mak<strong>in</strong>g ν<br />

sufficiently small. In this respect, it is <strong>in</strong>terest<strong>in</strong>g to note that the quantity ν becomes smaller<br />

when the 1D density n1d = Ntot/L is made larger. The depletion diverges for L →∞.This<br />

follows from the power law decay behavior of the 1-body density: The condensate depletion<br />

measures to what extent the 1-body density drops on a distance of the system length.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!