15.04.2013 Views

Bose-Einstein Condensates in Rotating Traps and Optical ... - BEC

Bose-Einstein Condensates in Rotating Traps and Optical ... - BEC

Bose-Einstein Condensates in Rotating Traps and Optical ... - BEC

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

166 Condensate fraction<br />

12.4 Tight b<strong>in</strong>d<strong>in</strong>g regime<br />

In the regime of deep optical lattices, one can neglect contributions to the depletion from<br />

higher b<strong>and</strong>s, because high energy excitations are particle-like (see discussion section 7.2) <strong>and</strong><br />

hence<br />

vj=1,q,px,py (r)<br />

≈ 0 . (12.50)<br />

uj=1,q,px,py (r)<br />

We are then allowed to restrict the sum <strong>in</strong> (12.1) to j =1.<br />

In the tight b<strong>in</strong>d<strong>in</strong>g limit, one can easily generalize expressions (7.25,7.26) for the Bogoliubov<br />

amplitudes <strong>in</strong> the lowest b<strong>and</strong> to account for transverse excitations<br />

uq,px,py(r) = ei(pxx+pyy)/¯h<br />

L<br />

vq,px,py(r) = ei(pxx+pyy)/¯h<br />

L<br />

Uq,px,py<br />

√ Nw<br />

Vq,px,py<br />

√ Nw<br />

<br />

e iqld/¯h f(z−ld), (12.51)<br />

l<br />

<br />

l<br />

e iqld/¯h f(z−ld), (12.52)<br />

where f(z) is the condensate Wannier function (see Eq.(6.26) with j =1). Start<strong>in</strong>g from this<br />

ansatz <strong>and</strong> for simplicity neglect<strong>in</strong>g contributions aris<strong>in</strong>g from n∂δ/∂n (see discussion section<br />

7.2), Eq.(7.38) can be generalized to 3D <strong>in</strong> a straightforward way, yield<strong>in</strong>g<br />

where<br />

¯hω(p⊥,q)=<br />

<br />

ε(p⊥,q)(ε(p⊥,q)+2κ −1 ), (12.53)<br />

ε(p⊥,q)= p2 ⊥<br />

m +2δ s<strong>in</strong>2 (qd/2) (12.54)<br />

<strong>and</strong> p 2 ⊥ = p2 x + p 2 y. For the amplitudes Uq,px,py <strong>and</strong> Vq,px,py <strong>in</strong> (12.51,12.52) we f<strong>in</strong>d the result<br />

Uq,px,py =<br />

Vq,px,py =<br />

ε +¯hω<br />

2 √ ,<br />

¯hωε<br />

(12.55)<br />

ε − ¯hω<br />

2 √ ,<br />

¯hωε<br />

(12.56)<br />

ensur<strong>in</strong>g the 3D normalization condition (12.10).<br />

Omitt<strong>in</strong>g the sum over j>1 <strong>in</strong> (12.1) we are left with the expression<br />

∆Ntot<br />

Ntot<br />

= 1<br />

Ntot<br />

= 1<br />

Ntot<br />

<br />

q,px,py<br />

<br />

q,px,py<br />

[ε(px,py,q) − ¯hω(px,py,q)] 2<br />

4¯hω(px,py,q)ε(px,py,q)<br />

<br />

1 ε(px,py,q)+κ<br />

2<br />

−1<br />

<br />

− 1<br />

¯hω(px,py,q)<br />

(12.57)<br />

with ε(px,py,q) <strong>and</strong> ω(px,py,q) given by (12.54) <strong>and</strong> (12.53) respectively. The spectrum of<br />

values of q <strong>and</strong> px, py is given by (12.2) <strong>and</strong> (12.3 ) to satisfy the correct boundary conditions.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!