15.04.2013 Views

Bose-Einstein Condensates in Rotating Traps and Optical ... - BEC

Bose-Einstein Condensates in Rotating Traps and Optical ... - BEC

Bose-Einstein Condensates in Rotating Traps and Optical ... - BEC

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

138 Array of Josephson junctions<br />

the expression (10.26) co<strong>in</strong>cides with the large-s limit of (10.25) (see Eq.(7.39) <strong>and</strong> respective<br />

discussion) <strong>in</strong>dicat<strong>in</strong>g that short length scale fluctuations of the average density are suppressed<br />

<strong>in</strong> a deep lattice.<br />

The formalism based on the dynamical equations (10.11,10.12) assigns a simple physical<br />

picture to small groundstate perturbations: They correspond to small amplitude plane wave<br />

variations of the phases Sl <strong>and</strong> the average densities nl<br />

∆Sl ∝ e i(lqd−ω(q)t) , (10.27)<br />

∆nl ∝ e i(lqd−ω(q)t) . (10.28)<br />

The phase difference of the perturbation at neighbour<strong>in</strong>g sites equals qd. S<strong>in</strong>ce the wavelength<br />

of such excitations can’t be smaller than twice the lattice period d, the wavenumber<br />

q correspond<strong>in</strong>g to the quasi-momentum of the Bogoliubov amplitudes used <strong>in</strong> section 7, has<br />

its maximal physically relevant value at π/d. For this maximal value the phase difference is<br />

π imply<strong>in</strong>g that the perturbation at neighbour<strong>in</strong>g sites is exactly out of phase: One site takes<br />

the m<strong>in</strong>imal values of phase <strong>and</strong> population when the neighbour<strong>in</strong>g sites reach the maxima.<br />

This is just another way of say<strong>in</strong>g that the perturbation has wavelength 2d <strong>and</strong> that a particle<br />

exchange takes place between neighbour<strong>in</strong>g wells. In contrast, at the m<strong>in</strong>imal value of<br />

q =2π/L the wavelength of the perturbation equals the size of the system <strong>and</strong> thus, particles<br />

<strong>in</strong>volved <strong>in</strong> the perturbation can be carried across half of the system length L.<br />

10.3 Josephson Hamiltonian<br />

Let us neglect the density dependence of δl,l′ (10.11,10.12). This corresponds to sett<strong>in</strong>g both quantities equal to the time-<strong>in</strong>dependent<br />

s<strong>in</strong>gle particle tunnel<strong>in</strong>g matrix element (4.30)<br />

δ l,l′<br />

= δ l,l′<br />

<br />

µ = δgn=0 = −2 dz f ∗ <br />

gn=0(z) − ¯h2 ∂<br />

2m<br />

2<br />

<br />

+ V (z) fgn=0(z − d) , (10.29)<br />

∂z2 <strong>and</strong> δ l,l′<br />

µ appear<strong>in</strong>g <strong>in</strong> the dynamical equations<br />

where fgn=0 is the s<strong>in</strong>gle particle Wannier function of the lowest b<strong>and</strong>. Consistently with this<br />

step, we replace <strong>in</strong> µl as def<strong>in</strong>ed <strong>in</strong> (10.13) the density-dependent Wannier function by fgn=0.<br />

In this way, we get<br />

<br />

µl = ε0sp + nlgd f 4 gn=0dz , (10.30)<br />

where ε0sp is the time-<strong>in</strong>dependent term<br />

<br />

ε0sp = fgn=0 − ¯h2 ∂2 <br />

z<br />

+ V (z) fgn=0dz , (10.31)<br />

2m<br />

which we omit <strong>in</strong> the follow<strong>in</strong>g. It is common to write the dynamical equations <strong>in</strong> terms of<br />

the populations Nl rather than the average densities nl <strong>and</strong> to replace the one-dimensional<br />

Wannier function fgn=0(z) by the correspond<strong>in</strong>g three-dimensional one fgn=0(r) =f(z)/L.<br />

Note that the latter step affects only the g-dependent term <strong>in</strong> the equation for ˙ Sl. Weobta<strong>in</strong><br />

¯h ˙ Nl =<br />

<br />

′) , (10.32)<br />

l ′ =l+1,l−1<br />

¯h ˙ EC<br />

Sl = −Nl<br />

2<br />

<br />

δgn=0 NlNl ′ s<strong>in</strong>(Sl − Sl<br />

+ <br />

l ′ =l+1,l−1<br />

δgn=0<br />

2<br />

<br />

Nl ′<br />

Nl<br />

cos(Sl − Sl ′) , (10.33)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!