03.06.2013 Views

5003 Lectures - Faculty of Engineering and Applied Science

5003 Lectures - Faculty of Engineering and Applied Science

5003 Lectures - Faculty of Engineering and Applied Science

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

E<strong>5003</strong> - Ship Structures I 115<br />

© C.G. Daley<br />

We can use the boundary conditions (θ3=1, δ2=0, δ(L)=0, θ(L)=0) to find M3<br />

<strong>and</strong> F2.<br />

⎛<br />

2<br />

1<br />

⎞<br />

⎜<br />

L<br />

θ ( L)<br />

= 0 = 1+<br />

− + ⋅ ⎟<br />

⎜<br />

M 3L<br />

F2<br />

EI<br />

⎟<br />

⎝<br />

2 ⎠<br />

⎛ 2 3<br />

1<br />

⎞<br />

⎜<br />

L L<br />

δ ( L)<br />

= 0 = 0 + L + − M + ⋅ ⎟<br />

⎜ 3 F2<br />

EI<br />

⎟<br />

⎝ 2 6 ⎠<br />

These two equations can be solved to get;<br />

from these we can find;<br />

M<br />

M<br />

4EI<br />

L<br />

6EI<br />

F =<br />

L<br />

3 = , 2 2<br />

2EI<br />

L<br />

Q ( x)<br />

= F<br />

F<br />

− 6EI<br />

=<br />

L<br />

6 = , 5 2<br />

This allows to find the stiffness terms;<br />

k 33<br />

4EI<br />

=<br />

L<br />

, k 63<br />

2EI<br />

=<br />

L<br />

k 23<br />

6EI<br />

= 2<br />

L<br />

, k 53<br />

− 6EI<br />

= 2<br />

L<br />

, k 13 = k 43 = 0<br />

2<br />

M ( x)<br />

= −M<br />

3 + F2<br />

⋅ x<br />

⎛<br />

2<br />

1<br />

⎞<br />

⎜<br />

x<br />

θ ( x) = θ + − + ⋅ ⎟<br />

3 M<br />

⎜ 3x<br />

F2<br />

EI<br />

⎟<br />

⎝<br />

2 ⎠<br />

⎜ 1 ⎛<br />

δ<br />

( x) = δ2<br />

+ θ3x<br />

+ − M<br />

EI ⎝<br />

3<br />

⎟ 2 3<br />

x x ⎞<br />

+ F2<br />

⋅<br />

2 6 ⎠

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!