04.08.2013 Views

User Guide for the TIMSS International Database.pdf - TIMSS and ...

User Guide for the TIMSS International Database.pdf - TIMSS and ...

User Guide for the TIMSS International Database.pdf - TIMSS and ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

S C A L I N G C H A P T E R 5<br />

of <strong>the</strong> coding was used in <strong>the</strong> scaling, so this facility in <strong>the</strong> model <strong>and</strong> scaling software was not<br />

used in <strong>TIMSS</strong>.<br />

Letting q be <strong>the</strong> latent variable <strong>the</strong> item response probability model is written as:<br />

T<br />

exp bij<br />

aij<br />

Pr ( Xij = ; A,b,<br />

| )<br />

( q + x)<br />

1 x q = K<br />

,<br />

i<br />

(2)<br />

T<br />

exp b q + a x<br />

<strong>and</strong> a response vector probability model as<br />

f<br />

å<br />

k = 1<br />

( ik ij )<br />

[ ]<br />

T<br />

( x q)= ( q ) x ( bq + A )<br />

; x| Y , x exp x ,<br />

(3)<br />

ì<br />

T<br />

with Y(<br />

q, x)= íå<br />

exp z bq + Ax<br />

îzÎW<br />

[ ( ) ]<br />

where W is <strong>the</strong> set of all possible response vectors.<br />

T I M S S D A T A B A S E U S E R G U I D E 5 - 3<br />

ü<br />

ý<br />

þ<br />

-<br />

1<br />

, (4)<br />

5.3 The Multidimensional R<strong>and</strong>om Coefficients Multinomial<br />

Logit Model<br />

The multidimensional <strong>for</strong>m of <strong>the</strong> model is a straight<strong>for</strong>ward extension of <strong>the</strong> model that<br />

assumes that a set of D traits underlie <strong>the</strong> individuals’ responses. The D latent traits define a<br />

D-dimensional latent space, <strong>and</strong> <strong>the</strong> individuals’ positions in <strong>the</strong> D-dimensional latent space<br />

are represented by <strong>the</strong> vector q=( q1, q2, K, qD<br />

) . The scoring function of response category<br />

k in item i now corresponds to a D by 1 column vector ra<strong>the</strong>r than a scalar as in <strong>the</strong><br />

unidimensional model. A response in category k in dimension d of item i is scored bikd. The<br />

T<br />

scores across D dimensions can be collected into a column vector bik = ( bik1, bik2, K , bikD)<br />

,<br />

T<br />

again be collected into <strong>the</strong> scoring sub-matrix <strong>for</strong> item i, Bi = ( bi1, bi2, K , biD)<br />

, <strong>and</strong> <strong>the</strong>n<br />

T T T collected into a scoring matrix B= ( B1 B2 BI)<br />

T<br />

, , K , <strong>for</strong> <strong>the</strong> whole test. If <strong>the</strong> item parameter<br />

vector, x, <strong>and</strong> <strong>the</strong> design matrix, A, are defined as <strong>the</strong>y were in <strong>the</strong> unidimensional model <strong>the</strong><br />

probability of a response in category k of item i is modeled as<br />

( ij<br />

) =<br />

Pr X = 1;<br />

A, B,<br />

x| q<br />

And <strong>for</strong> a response vector we have:<br />

exp(<br />

bijq+ a¢<br />

ijx)<br />

i<br />

exp(<br />

b q+ a¢<br />

x)<br />

K<br />

å<br />

k = 1<br />

ik ik<br />

[ ]<br />

( ) = ( ) ¢ ( + )<br />

f x; x| q Y q, x exp x Bq Ax<br />

,<br />

ì<br />

T<br />

with Y(<br />

qx , ) = íå<br />

exp z Bq+ Ax<br />

îzÎW<br />

[ ( ) ]<br />

The difference between <strong>the</strong> unidimensional model <strong>and</strong> <strong>the</strong> multidimensional model is that <strong>the</strong><br />

ability parameter is a scalar, q, in <strong>the</strong> <strong>for</strong>mer, <strong>and</strong> a D by one-column vector, q, in <strong>the</strong> latter.<br />

ü<br />

ý<br />

þ<br />

-1<br />

.<br />

(5)<br />

(6)<br />

(7)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!