28.02.2014 Views

special - ALUMINIUM-Nachrichten – ALU-WEB.DE

special - ALUMINIUM-Nachrichten – ALU-WEB.DE

special - ALUMINIUM-Nachrichten – ALU-WEB.DE

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

RESEARCH<br />

are only minor spaces between the fibres, but<br />

there was a complete metallisation reached by<br />

the chosen process conditions. There were no<br />

voids at the carbon fibre-matrix-interface. To<br />

sum up, the state of science and technique for<br />

producing particle, wire or fibre reinforced<br />

strip by twin-roll casting, several constructions<br />

for feeding the reinforcement homogeneously<br />

to the melt were suggested up to now.<br />

In dependence from the process parameters,<br />

very thin strip down to a thickness of 70 μm<br />

and good wetting of the reinforcement were<br />

achieved.<br />

Future research directions<br />

(1) Grain refinement: A significant advantage<br />

of light metal strip produced by twin-roll<br />

casting is the ability to obtain extremely fine<br />

grained microstructure. Mechanical properties<br />

gain from fine grained microstructure as well<br />

as the formability. Superplasticity is discussed<br />

in this context. A future successful development<br />

of superplastic formable sheet, which<br />

can be produced by twin-roll casting, would<br />

ease the cost-efficient production of complex<br />

shaped sheets.<br />

One positive influence on grain refinement<br />

is the very high cooling rate up to several<br />

1000 °C/s. It can be promoted by the contact<br />

conditions between the melt and the rolls surface<br />

(see point (2). Several researchers prove<br />

the application of ultrasonic treatment. It fosters<br />

not only a fine grained, but a homogenous<br />

microstructure. Therefore, it is recommended<br />

to implement ultrasonic melt treatment in future<br />

twin-roll cast equipment.<br />

(2) Contact conditions between the melt<br />

and the rolls surface: Solidification under pressure<br />

seems to enhance the cooling rate and<br />

the roll speed. Contact between the cooled roll<br />

surface and the melt is improved by pressure,<br />

and, therefore, the heat transfer is promoted.<br />

Some researchers point to the advantage of<br />

hydrostatic pressure of the melt pool in terms<br />

of shortening the cooling time and increasing<br />

the output of strip. Further application of additional<br />

pressure on the melt pool or dynamic<br />

mixing of the liquid metal in the pool between<br />

the rolls seems to be a promising way to increase<br />

cooling time and productivity of twinroll<br />

casting light metal strip. For light metal strip,<br />

copper rolls superior in comparison to steel [8].<br />

(3) Fibre and particle reinforced light<br />

metal strip: Strength and elastic modulus<br />

of conventional light metals, i.e. for hybrid<br />

materials structures of the future auto-body<br />

could be enhanced by reinforcements. Up to<br />

now, wire or fibres were inserted into twin-roll<br />

cast strip successfully. It was demonstrated,<br />

that very thin light metal strip of 70 μm thickness<br />

can be produced by a laboratory twin-roll<br />

caster. The up scaling of these results requires<br />

new concept for fibre integration into the melt.<br />

Here, downward melt drag twin-roll casting<br />

offers the possibility to insert the fibre rovings<br />

efficiently. The production of reinforced<br />

light metal strip by downward twin-roll casting<br />

should be investigated in future research.<br />

Acknowledgement<br />

The author thanks Dr. T. Haga of the Department<br />

of Mechanical Engineering, Osaka Institute<br />

of Technology, Japan, for the friendly<br />

allowance to use and publish photographs and<br />

drawings of his international appreciated research<br />

work in twin-roll casting.<br />

References<br />

[1] H. Bessemer, Über die Herstellung von endlosem<br />

Blech aus schmiedbarem Eisen und Stahl direkt<br />

aus dem flüssigen Metall, Stahl und Eisen, 1891, 11,<br />

921<br />

[2] E. Nes, S. Slevolden, Casting and annealing<br />

structure in strip cast aluminium alloys, Aluminium,<br />

1979, 55, 319<br />

[3] T. Haga, Development of a twin roll caster for<br />

light metals, J. Achievements in Materials and<br />

Manufacturing Engineering, 2010, 43, 393<br />

[4] T. Haga, H. Sakaguchi, H. Watari, S. Kumai, High<br />

speed twin roll casting of 6061 alloy strip, Archives<br />

of Materials Science and Engineering, 2008, 31, 49<br />

[5] D. Shu, J. Wang, B. Sun, Performance of electromagnetic<br />

purification system in continuous twin<br />

roll casting of aluminium sheet, Mater. Sci. Forum,<br />

2007, 546-549,<br />

[6] R. E. Brown, Development of magnesium wrought<br />

products rolling and sheet casting, Light Metal Age,<br />

2002, 60, 80<br />

[7] S. Hamer, C. Romanowski, B. Taraglio, Continuous<br />

casting and rolling of aluminium: analysis of<br />

capacities, products ranges and technology, Light<br />

Metal Age, 2002, 60, 6-17<br />

[8] P.-Y. Menet, F. Barion, K. Maiwald, R. Cayol,<br />

M. Bosch, Strip casting technology a key to product<br />

quality, International Melt Quality Workshop,<br />

Madrid 2001<br />

[9] T. Haga, K. Takahashi, H. Watari, S. Kumai, Casting<br />

of wire inserted composite aluminium strip using<br />

a twin roll caster, J. Mater. Proc. Technol., 2007,<br />

192-193, 108<br />

[10] T. Haga, A twin roll caster to cast clad strip, in:<br />

Proceedings of the 9 th International Manufacturing<br />

Conference with China IMCC´9, Hong Kong, 2000, 5<br />

[11] T. Haga, Downward melt drag caster for aluminium<br />

alloy strip, in: Proceedings of the Advanced<br />

Material Process Technology, Malaysia, 1998, 105<br />

[12] N. J. Keegan, W. Schneider, H. P. Krug, J. Moritz,<br />

M. Stolz, V. Dopp, Evaluation ceramic-foam and<br />

bonded particle cartridge filtration system, JOM,<br />

1996, 48, 28<br />

[13] T. Chandra, N. Wanderka, W. Reimers, M. Ionescu,<br />

Effect of electromagnetic purification on properties<br />

of Al-RE rod for electrical purpose, Mater. Sci.<br />

Forum, 2010, 638-642, 345<br />

[14] H. Westengen, E. Nes, Twin-roll casting of aluminium,<br />

The Occurrence of Structure, Inhomogeneities<br />

and Defects in As-Cast Strips, Ligth Metals,<br />

1984, 1111<br />

[15] S. Das, N.S. Lim, H.W. Kim, C.G. Park, Effect of<br />

rolling speed on microstructure and age hardeing<br />

behaviour of Al-Mg-Si alloy produced by twin-roll<br />

casting process, Materials & Design, 2011, 32, 4603<br />

[16] F. Moll, M. Mekkaoui, S. Schumann, H. Friedrich,<br />

Application of Mg sheets in car body structures,<br />

in K.U. Kainer (ed.): Magnesium, Proceedings of the<br />

6 th International conferences of Magnesium and<br />

Magnesium alloys, DGM, 2003, 936<br />

[17] A.A. Kaya, O. Duygulu, S. Uncuncuoglu,<br />

G. Oktay, D.S. Temur, O. Yucel, Production of 150<br />

cm wide AZ31 magnesium sheet by twin roll casting,<br />

Trans. Nonferrous Met. Soc. China, 2008, 18, 185<br />

[18] R. Kawalla, M. Oswald, C. Schmidt, M. Ullmann,<br />

H.P. Vogt, N.D. Cuong, New Technology for the<br />

production of magnesium strips and sheets, Metallurgija,<br />

2008, 47, 195<br />

[19] S.S. Park, W.J. Park, C.H. Kim, B.S. You, The<br />

twin-roll casting of magnesium alloys, JOM, 2009,<br />

61, 14<br />

[20] R.V. Allen, D.R. East, T.J. Johnson, W.E. Borlidge,<br />

D. Liang, Magnesium alloy sheet produced by<br />

twin roll casting, in: Magnesium Technology (ed.:<br />

J. Hryn), The Minerals, Metalls & Materials Society,<br />

2001, 73<br />

[21] S. Celotto, TEM study of continuous precipitation<br />

in Mg-9wt%Al-1wt%Zn alloy, Acta mater.,<br />

2000, 48, 1775<br />

[22] K. Ishikawa, Precipityted structure and mechanical<br />

properties of AZ91D magnesium alloy, J.<br />

Japan Inst. Metals, 1997, 61, 1031<br />

[23] Y. Nakaura, A. Watanate, K. Ohori, Microstructure<br />

and mechanical properties of AZ31 magnesium<br />

alloy strip produced by twin roll casting, Materials<br />

Transactions, 2006, 47, 1743<br />

[24] J. Zhao, K. Yu, X. Xue, D. Mao, J. Li, Effects of<br />

ultrasonic treatment on the tensile properties and<br />

microstructure of twin roll casting Mg-3%AlZn-<br />

0,8%Ce-0,3%Mn (wt%) alloy strips, J. alloys and<br />

compounds 509, 2011, 8607<br />

[25] A. Ramirez, M. Qian, B. David, T. Wilks,<br />

D.H. StJohn, Potency of high-intensity ultrasonic<br />

treatment for grain refinement of magnesium alloys,<br />

Scripta Mater., 2008, 59, 19<br />

[26] M. Qian, A. Ramirez, A. Das, D.H. StJohn, The<br />

effect of solute on ultrasonic grain refinement of<br />

magnesium alloys J.Cryst.Growth, 2010, 312,<br />

2267<br />

[27] D.H. StJohn, M.A. Qian, M.A. Easten, P. Cao,<br />

Z.O.E. Hildebrandt, Grain Refinement of Magnesium<br />

Alloys II. Grain refinement of magnesium<br />

technical status, Metallurgical Mater. Trans. A, 2005,<br />

36, 1669<br />

[28] T. Haga, K. Takahashi, Casting of composites<br />

strip using a twin roll caster, J. Mater. Proc. Technol.,<br />

2004, 157-158, 701<br />

[29] Erfindungsmeldung <strong>DE</strong>19605398A121.08.<br />

1997, Herstellen von Verbundwerkstoffen durch<br />

Bandgießen bzw. Gießwalzen, Erfinder: B. Wielage,<br />

J. Rahm, A. Dorner, TU Chemnitz, 1997<br />

[30] A. Dorner-Reisel, A.Y. Nishida, V. Klemm,<br />

K. Nestler, G. Marx, E. Müller, Investigation of interfacial<br />

interaction between uncoated and coated<br />

<strong><strong>ALU</strong>MINIUM</strong> · 11/2012 63

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!