09.05.2014 Views

Characterization and control of the fiber-matrix interface in ceramic ...

Characterization and control of the fiber-matrix interface in ceramic ...

Characterization and control of the fiber-matrix interface in ceramic ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

160<br />

Fiber length becomes important after <strong>matrix</strong> failure. When a brittle<br />

<strong>matrix</strong> fractures, <strong>the</strong> <strong>fiber</strong> <strong>and</strong> <strong>matrix</strong> debond <strong>and</strong> <strong>the</strong> ultimate fracture<br />

strength <strong>of</strong> <strong>the</strong> composite will <strong>the</strong>n depend on <strong>the</strong> forces to overcome <strong>the</strong><br />

friction between <strong>the</strong> <strong>fiber</strong>s <strong>and</strong> <strong>matrix</strong> dur<strong>in</strong>g <strong>fiber</strong> pull-out <strong>and</strong> to<br />

fracture <strong>the</strong> re<strong>in</strong>forc<strong>in</strong>g <strong>fiber</strong>s. Once debond<strong>in</strong>g has occurred, <strong>the</strong><br />

frictional resistance to <strong>the</strong> <strong>fiber</strong> pull<strong>in</strong>g out <strong>of</strong> <strong>the</strong> <strong>matrix</strong> is<br />

determ<strong>in</strong>ed by <strong>the</strong> normal compressive forces exerted on <strong>the</strong> <strong>fiber</strong> by <strong>the</strong><br />

<strong>matrix</strong> (141-143). A semiempirical expression for <strong>the</strong> tensile stress on a<br />

<strong>fiber</strong> dur<strong>in</strong>g pull-out <strong>in</strong> a glass or carbon-<strong>fiber</strong>-re<strong>in</strong>forced cement is<br />

given as<br />

where Be is <strong>the</strong> embedded length <strong>of</strong> <strong>the</strong> <strong>fiber</strong>, Ti is <strong>the</strong> <strong>in</strong>terfacial shear<br />

stress, df is <strong>the</strong> <strong>fiber</strong> diameter, <strong>and</strong> k is a fitt<strong>in</strong>g constant. As shown<br />

earlier, <strong>the</strong>re is a m<strong>in</strong>imum length over which efficient load transfer can<br />

occur. The argument can be extended to determ<strong>in</strong>e <strong>the</strong> <strong>in</strong>fluence <strong>of</strong><br />

<strong>in</strong>terfacial frictional stress on <strong>the</strong> ultimate strength <strong>of</strong> a composite by<br />

assum<strong>in</strong>g that <strong>the</strong> <strong>in</strong>terfacial frictional stress decreases l<strong>in</strong>early with<br />

stress on <strong>the</strong> <strong>fiber</strong> (see Figure 7.4).<br />

The postcrack<strong>in</strong>g strength <strong>of</strong> a<br />

<strong>fiber</strong>-re<strong>in</strong>forced composite is <strong>the</strong>n<br />

where Vf is <strong>the</strong> volume fraction <strong>of</strong> <strong>fiber</strong> <strong>and</strong> <strong>the</strong> variables are as <strong>in</strong> <strong>the</strong><br />

previous equation <strong>and</strong><br />

where E is <strong>the</strong> modulus, Y is <strong>the</strong> Poisson's ratio, <strong>and</strong> p is <strong>the</strong><br />

coefficient <strong>of</strong> friction between <strong>the</strong> <strong>fiber</strong> <strong>and</strong> <strong>matrix</strong>.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!