09.05.2014 Views

Characterization and control of the fiber-matrix interface in ceramic ...

Characterization and control of the fiber-matrix interface in ceramic ...

Characterization and control of the fiber-matrix interface in ceramic ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

55<br />

The multiple-<strong>matrix</strong> fracture condition set by Eq. (17) reveals that <strong>the</strong><br />

method is I.argely dependent on <strong>the</strong> volume <strong>of</strong> <strong>the</strong> <strong>matrix</strong>, thus on coat<strong>in</strong>g<br />

thickness. If <strong>the</strong> coat<strong>in</strong>g is too thick, s<strong>in</strong>gle fracture will occur. The<br />

critical volume fraction <strong>of</strong> <strong>fiber</strong> <strong>and</strong> <strong>matrix</strong> for <strong>the</strong> transition from<br />

s<strong>in</strong>gle to multiple fracture are shown schematically <strong>in</strong> Figure 7.5. The<br />

plot demonstrates that high-volume fractions <strong>of</strong> <strong>fiber</strong> are necessary far<br />

mu1 t-iple fracture; thus, th<strong>in</strong> coat<strong>in</strong>gs are necessary for this technique<br />

to be properly implemented. E’i-gure 7.6 graphically depicts <strong>the</strong> condition<br />

for multiple-<strong>matrix</strong> fracture for a coated Nicalsn <strong>in</strong>dividual filament.<br />

The <strong>in</strong>ateri-als be<strong>in</strong>g considered are brittle <strong>ceramic</strong>s I<br />

It is assumed<br />

that <strong>the</strong> <strong>fiber</strong>s <strong>and</strong> <strong>matrix</strong> will possess very limited stra<strong>in</strong> tal-erance;<br />

thiis, fracture will occur over a small range <strong>of</strong> stra<strong>in</strong>. The radial <strong>and</strong><br />

tangential. stresses <strong>in</strong>duced by <strong>the</strong> contract<strong>in</strong>g <strong>matrix</strong> as a result <strong>of</strong><br />

Poisson effects can he assumed to be negligible. The expressions for<br />

stresses <strong>and</strong> stra<strong>in</strong>s <strong>in</strong> <strong>the</strong> <strong>matrix</strong> <strong>and</strong> <strong>fiber</strong> can be derived us<strong>in</strong>g <strong>the</strong><br />

<strong>fiber</strong>-sheath model (89-92) as shown <strong>in</strong> Figure 7.7. When a s<strong>in</strong>gle<br />

conti-nuous <strong>fiber</strong> embedded <strong>in</strong> a <strong>matrix</strong> is stretched <strong>in</strong> a direction<br />

parallel to <strong>the</strong> fi.ber, tractions arise across <strong>the</strong> <strong>in</strong>terEace as a result<br />

<strong>of</strong> <strong>the</strong> difference <strong>in</strong> Poisson’s ratios <strong>of</strong> <strong>the</strong> <strong>fiber</strong> <strong>and</strong> <strong>matrix</strong>. Assum<strong>in</strong>g<br />

<strong>the</strong> <strong>fiber</strong> <strong>and</strong> <strong>matrix</strong> are circularly symmetric, <strong>the</strong> <strong>in</strong>terfacial traction<br />

is a normal stress (90) UP given by<br />

where k is <strong>the</strong> plane-stra<strong>in</strong> bulk modulus <strong>and</strong> G,<br />

is <strong>the</strong> shear modulus <strong>of</strong><br />

<strong>the</strong> <strong>matrix</strong>. The stress at <strong>the</strong> <strong><strong>in</strong>terface</strong> caused by <strong>matrix</strong> contraction is

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!