09.05.2014 Views

Characterization and control of the fiber-matrix interface in ceramic ...

Characterization and control of the fiber-matrix interface in ceramic ...

Characterization and control of the fiber-matrix interface in ceramic ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

49<br />

<strong>in</strong> Figure 7.2. Based on <strong>the</strong> multiple-<strong>matrix</strong>-crack<strong>in</strong>g concepts described<br />

by Aveston, Cooper, <strong>and</strong> Kelly (81,82) <strong>and</strong> some recent work by Drzal (84)<br />

on <strong><strong>in</strong>terface</strong>s <strong>in</strong> polymer <strong>matrix</strong>-graphite <strong>fiber</strong> composites, a simple<br />

tensile test to determ<strong>in</strong>e <strong>in</strong>terfacial frictional stress was devised. In<br />

<strong>the</strong> test, a th<strong>in</strong> coat<strong>in</strong>g is deposited on a section <strong>of</strong> a s<strong>in</strong>gle filament.<br />

The filament is <strong>the</strong>n gripped on <strong>the</strong> uncoated ends, <strong>and</strong> a tensile force is<br />

applied.<br />

Load transfer to <strong>the</strong> coat<strong>in</strong>g from <strong>the</strong> <strong>fiber</strong> can only occur<br />

across <strong>the</strong> <strong>fiber</strong>-<strong>matrix</strong> <strong><strong>in</strong>terface</strong>. As load<strong>in</strong>g cont<strong>in</strong>ues, <strong>the</strong> axial<br />

stress <strong>in</strong> <strong>the</strong> coat<strong>in</strong>g <strong>in</strong>creases until <strong>the</strong> coat<strong>in</strong>g fractures<br />

circumferentially (Figure 7.3).<br />

Cont<strong>in</strong>ued application <strong>of</strong> <strong>the</strong> load<br />

results <strong>in</strong> repeated fracture <strong>of</strong> <strong>the</strong> coat<strong>in</strong>g <strong>in</strong>to uniform lengths.<br />

The<br />

lengths <strong>of</strong> <strong>the</strong>se fragments is dependent on <strong>the</strong> <strong>in</strong>terfacial frictional<br />

stress, <strong>the</strong> strength <strong>of</strong> <strong>the</strong> coat<strong>in</strong>g, <strong>and</strong> <strong>the</strong> thickness <strong>of</strong> <strong>the</strong> film.<br />

From an equilibrium <strong>of</strong> forces between <strong>the</strong> axial stress <strong>in</strong> <strong>the</strong><br />

coat<strong>in</strong>g ucg <strong>and</strong> <strong>the</strong> <strong>in</strong>terfacial shear stress Ti act<strong>in</strong>g on length 1, a<br />

simple relationship can be derived:<br />

where F is <strong>the</strong> applied force <strong>and</strong> Acg is <strong>the</strong> area <strong>of</strong> <strong>the</strong> coat<strong>in</strong>g given by<br />

Acg - u (dc2 - df2)/4.<br />

The diameter <strong>of</strong> <strong>the</strong> coat<strong>in</strong>g is dc, <strong>and</strong> <strong>the</strong><br />

diameter <strong>of</strong> <strong>the</strong> <strong>fiber</strong> is df.<br />

The shear stress at <strong>the</strong> <strong><strong>in</strong>terface</strong> is

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!