24.12.2012 Views

References - Bogoliubov Laboratory of Theoretical Physics - JINR

References - Bogoliubov Laboratory of Theoretical Physics - JINR

References - Bogoliubov Laboratory of Theoretical Physics - JINR

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

ky �GeV�<br />

0.4<br />

0.2<br />

0.0<br />

�0.2<br />

�0.4<br />

�0.4 �0.2 0.0 0.2 0.4<br />

kx �GeV�<br />

Ρ �GeV<br />

� 5.4<br />

� 5.4<br />

� 4.8<br />

� 4.2<br />

� 3.6<br />

� 3.<br />

� 2.4<br />

� 1.8<br />

� 1.2<br />

� 0.6<br />

�2 �<br />

ky �GeV�<br />

0.4<br />

0.2<br />

0.0<br />

�0.2<br />

�0.4<br />

�0.4 �0.2 0.0 0.2 0.4<br />

kx �GeV�<br />

Ρ �GeV<br />

� 3.6<br />

� 3.6<br />

� 3.2<br />

� 2.8<br />

� 2.4<br />

� 2.<br />

� 1.6<br />

� 1.2<br />

� 0.8<br />

� 0.4<br />

�2 �<br />

Figure 2: Quark densities in the kT plane for longitudinally polarized quarks in a transversely polarized<br />

proton for up (left panel ) and down (right panel) quark.<br />

TMDs [13] are satisfied in our model, see [5].) These model results are supported from a<br />

recent lattice calculation [14, 15] which gives, for the density related to g1T , 〈k u<br />

x 〉 = 67(5)<br />

MeV, and 〈k d<br />

x〉 = −30(5) MeV. For the density related to h⊥ 1L , they also find shifts <strong>of</strong><br />

〉 = −60(5) MeV, and 〈kd〉<br />

= 15(5) MeV.<br />

similar magnitude but opposite sign: 〈k u<br />

x<br />

2 Results for azimuthal SSAs<br />

In Ref. [16] the present results for the T-even TMDs were applied to estimate azimuthal<br />

asymmetries in SIDIS, discussing the range <strong>of</strong> applicability <strong>of</strong> the model, especially with<br />

regard to the scale dependence <strong>of</strong> the observables and the transverse-momentum depen-<br />

dence <strong>of</strong> the distributions. Here we review the results for the Collins asymmetry A sin(φ+φS)<br />

UT<br />

and for A sin(3φ−φS)<br />

UT<br />

TMDs h1, andh ⊥ 1T<br />

, due to the Collins fragmentation function and to the chirally-odd<br />

, respectively. In both cases, we use the results extracted in [17] for<br />

the Collins function. In the denominator <strong>of</strong> the asymmetries we take f1 from [18] and the<br />

unpolarized fragmentation function from [19], both valid at the scale Q 2 =2.5 GeV 2 .<br />

In Fig. 2 the results for the Collins asymmetry in DIS production <strong>of</strong> charged pions <strong>of</strong>f<br />

proton and deuterium targets are shown as function <strong>of</strong> x. The model results for h1 evolved<br />

from the low hadronic scale <strong>of</strong> the model to Q 2 =2.5 GeV 2 ideally describe the HER-<br />

0.1<br />

0.05<br />

0<br />

-0.05<br />

A sin(φ h + φ S )<br />

UT<br />

π + proton<br />

-0.1<br />

0 0.1 0.2 0.3<br />

(a)<br />

x<br />

0.05<br />

0<br />

-0.05<br />

-0.1<br />

A sin(φ h + φ S )<br />

UT<br />

π - proton<br />

-0.15<br />

0 0.1 0.2 0.3<br />

(b)<br />

x<br />

0.1<br />

0<br />

-0.1<br />

A sin(φ C )<br />

UT<br />

10 -2<br />

10 -1<br />

(c)<br />

π + deuteron<br />

x<br />

0.1<br />

0.05<br />

0<br />

-0.05<br />

x<br />

A sin(φ C )<br />

UT<br />

10 -2<br />

10 -1<br />

(d)<br />

π - deuteron<br />

Figure 3: The single-spin asymmetry A sin(φh+φS) sin φC<br />

UT ≡−AUT in DIS production <strong>of</strong> charged pions <strong>of</strong>f<br />

proton and deuterium targets, as function <strong>of</strong> x. The theoretical curves are obtained on the basis <strong>of</strong> the<br />

light-cone CQM predictions for h1(x, Q2 ) from Ref. [4,5]. The (preliminary) proton target data are from<br />

HERMES [20], the deuterium target data are from COMPASS [21].<br />

105<br />

x

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!