24.12.2012 Views

References - Bogoliubov Laboratory of Theoretical Physics - JINR

References - Bogoliubov Laboratory of Theoretical Physics - JINR

References - Bogoliubov Laboratory of Theoretical Physics - JINR

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

a describes acceleration <strong>of</strong> the observer and ω is an angular velocity <strong>of</strong> a noninertial<br />

reference system.<br />

The covariant Dirac equation for spin-1/2 particles and the orthonormal tetrad<br />

e �0<br />

i = Vδ 0<br />

i , e �a i = W � δ a i − K a δ 0<br />

�<br />

i , a,b =1, 2, 3, (5)<br />

can be transformed to the familiar Schrödinger form with the Hermitian Hamiltonian<br />

H ′ = βmc 2 V + c<br />

2<br />

[(α · p)F + F(α · p)]<br />

+ 2G<br />

c2 �G<br />

J · (r × p)+<br />

r3 2c2r3 �<br />

3(r · J)(r · Σ)<br />

r2 �<br />

− J · Σ . (6)<br />

Dirac Hamiltonian (6) contains the first part describing the static gravitational field and<br />

the second one characterizing the contribution <strong>of</strong> rotation <strong>of</strong> the central body.<br />

This FW transformation [2, 3] leads to the final Hamiltonian which is given by<br />

HFW = H (1)<br />

2G<br />

FW + H(2)<br />

FW , H(2)<br />

FW =<br />

c2 �G<br />

J · l +<br />

r3 2c2r3 �<br />

3(r · J)(r · Σ)<br />

r2 �<br />

− J · Σ<br />

− 3�G<br />

�<br />

1<br />

8 ɛ(ɛ + mc2 ) ,<br />

�<br />

2{(J · l), (Σ · l)}<br />

r5 + 1<br />

�<br />

(r · J)<br />

(Σ · (p × l) − Σ · (l × p)) ,<br />

2<br />

r5 �<br />

�<br />

+ Σ · (p×(p×J)), 1<br />

r3 ���<br />

− 3�2c2 �<br />

G<br />

(5p<br />

8<br />

2 r −p 2 ) 2ɛ2 +ɛmc2 +m2c4 ɛ4 (ɛ + mc2 ) 2 , (J · l)<br />

r5 �<br />

,<br />

(7)<br />

where l = r×p is an angular momentum operator, and the operator p 2 r = −�2<br />

r2 � �<br />

∂ 2 ∂<br />

r<br />

∂r ∂r<br />

is proportional to the radial part <strong>of</strong> the Laplace operator. The rotation-independent<br />

contribution H (1)<br />

FW has been calculated earlier [4].<br />

The newly obtained operator <strong>of</strong> angular velocity <strong>of</strong> rotation <strong>of</strong> the spin in the static<br />

gravitational field is equal to<br />

Ω (2) = G<br />

c2r3 �<br />

3(r · J)r<br />

r2 �<br />

− J − 3G<br />

�<br />

1<br />

4 ɛ(ɛ + mc2 ) ,<br />

�<br />

2{l, (J · l)}<br />

r5 + 1<br />

�<br />

(r · J)<br />

(p × l − l × p),<br />

2<br />

r5 � �<br />

+ (p × (p × J)), 1<br />

r3 ���<br />

. (8)<br />

The semiclassical formula corresponding to Eq.<br />

average spin has the form<br />

(8) and describing the motion <strong>of</strong><br />

Ω (2) = G<br />

c2r3 �<br />

3(r · J)r<br />

r2 �<br />

3G<br />

− J −<br />

r5ɛ(ɛ + mc2 [l(l · J)+(r · p)(p × (r × J))] .<br />

)<br />

(9)<br />

The presented quantum mechanical and semiclassical equations are principal new results.<br />

Description <strong>of</strong> a spin requires the introduction <strong>of</strong> a tetrad. A choice <strong>of</strong> a tetrad means<br />

a selection <strong>of</strong> a local reference system <strong>of</strong> an observer.<br />

There are infinitely many tetrads since a reference frame <strong>of</strong> an observer can obviously<br />

be constructed in infinitely many ways. In particular, from a given tetrad field e α i we can<br />

obtain a continuous family <strong>of</strong> tetrads by performing the Lorentz transformation e ′α i =<br />

Λ α βe β<br />

i , where the elements <strong>of</strong> the Lorentz matrix Λα β(x) are arbitrary functions <strong>of</strong> the<br />

spacetime coordinates. In practice, there are three most widely used gauges.<br />

456

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!