24.12.2012 Views

References - Bogoliubov Laboratory of Theoretical Physics - JINR

References - Bogoliubov Laboratory of Theoretical Physics - JINR

References - Bogoliubov Laboratory of Theoretical Physics - JINR

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

104xdBR(φ--> π η 0<br />

-1<br />

γ )/dm, GeV<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

0.7 0.75 0.8 0.85 0.9 0.95 1<br />

m, GeV<br />

10 8 x dBr (φ-->π 0 π 0 γ )/dm, MeV -1<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

300 400 500 600 700 800 900 1000<br />

m, MeV<br />

Figure 4: The left (right) plot shows the fit to the KLOE data<br />

for the π 0 η (π 0 π 0 ) mass spectrum in the φ → γπ 0 η (φ → γπ 0 π 0 )<br />

decay caused by the a0(980) (σ(600)+f0(980)) production through<br />

the K + K − loop mechanism.<br />

7 Scalar Nature and Production<br />

Mechanisms in γγ collisions [4]<br />

Twenty seven years ago we predicted the suppression<br />

<strong>of</strong> a0(980) → γγ and f0(980) → γγ in the q 2 ¯q 2<br />

MIT model, Γa0→γγ ∼ Γf0→γγ ∼ 0.27 keV. Experiment<br />

supported this prediction.<br />

Recently the experimental investigations have<br />

made great qualitative advance. The Belle Collaboration<br />

published data on γγ → π + π − , γγ → π 0 π 0 ,<br />

and γγ → π 0 η, whose statistics are huge [5], see<br />

Fig. 5. They not only proved the theoretical expectations<br />

based on the four-quark nature <strong>of</strong> the light<br />

scalar mesons, but also have allowed to elucidate the<br />

principal mechanisms <strong>of</strong> these processes. Specifically,<br />

Σ�ΓΓ�Π � Π � Σ�ΓΓ�Π ;�cosΘ��0.6� �nb�<br />

� � ;�cos��0.6� �nb�<br />

Σ�ΓΓ�Π 0 Π 0 Σ�ΓΓ�Π ;�cosΘ��0.8� �nb�<br />

0 Р0 ;�cos��0.8� �nb�<br />

Σ�ΓΓ�Π 0 Σ�ΓΓ�Π Η;�cosΘ��0.8� �nb�<br />

0 Η;�cosΘ��0.8� �nb�<br />

350<br />

Data: � Belle,� MarkII,� CELLO<br />

300<br />

�������� Σ�Σ0�Σ2 �������� Σ0 Born<br />

250<br />

������ Σ2 ����� Σ<br />

200<br />

� 350<br />

300<br />

250<br />

Born<br />

2<br />

200<br />

150<br />

100<br />

50<br />

Σ<br />

Σ 0<br />

�a�<br />

0<br />

0.2 0.4 0.6 0.8 1 1.2 1.4<br />

����� �����<br />

s �GeV �GeV ��<br />

175<br />

150<br />

125<br />

100<br />

75<br />

50<br />

25<br />

50<br />

40<br />

30<br />

20<br />

10<br />

Data: � Belle, CrystalBall<br />

��������� ΣS �Σ<br />

�<br />

f2<br />

��� Σ S<br />

�� Σ � f 2<br />

�b�<br />

0<br />

0.2 0.4 0.6 0.8 1 1.2 1.4<br />

����� �����<br />

s �GeV �GeV ��<br />

� Belledata, Systematicerror�c�<br />

0<br />

0.8 0.9 1 1.1 1.2 1.3 1.4 1.5<br />

����� �����<br />

s �GeV �GeV ��<br />

Figure 5: Descriptions <strong>of</strong> the Belle<br />

data on γγ → π + π − (a), γγ → π 0 π 0 (b),<br />

and γγ → π 0 η (c).<br />

the direct coupling constants <strong>of</strong> the σ(600), f0(980), and a0(980) resonances with the<br />

system are small with the result that their decays into γγ are the four-quark transitions<br />

caused by the rescatterings σ(600) → π + π − → γγ, f0(980) → K + K − → γγ and<br />

a0(980) → K + K − → γγ in contrast to the γγ decays <strong>of</strong> the classic P wave tensor q¯q<br />

mesons a2(1320), f2(1270) and f ′ 2(1525), which are caused by the direct two-quark tran-<br />

sitions q¯q → γγ in the main. As a result the practically model-independent prediction<br />

= 25 : 9 agrees with experiment rather well. The two-<br />

<strong>of</strong> the q¯q model g2 f2γγ : g2 a2γγ<br />

photon light scalar widths averaged over resonance mass distributions 〈Γf0→γγ〉ππ ≈ 0.19<br />

keV, 〈Γa0→γγ〉πη ≈ 0.3 keV and 〈Γσ→γγ〉ππ ≈ 0.45 keV. As to the ideal q¯q model prediction<br />

g2 f0γγ : g2 a0γγ = 25 : 9, it is excluded by experiment.<br />

8 Summary<strong>of</strong>theAbove [1,3,4]<br />

(i) The mass spectrum <strong>of</strong> the light scalars, σ(600), κ(800), f0(980), a0(980), gives an<br />

idea <strong>of</strong> their q2 ¯q 2 structure. (ii) Both intensity and mechanism <strong>of</strong> the a0(980)/f0(980)<br />

production in the φ(1020) radiative decays, the q2 ¯q 2 transitions φ → K + K− → γ[a0(980)<br />

/f0(980)], indicate their q2 ¯q 2 nature. (iii) Both intensity and mechanism <strong>of</strong> the scalar<br />

meson decays into γγ, theq2¯q 2 transitions σ(600) → π + π− → γγ and [f0(980)/a0(980)] →<br />

K + K− → γγ, indicate their q2 ¯q 2 nature also.<br />

9 The a 0<br />

0 (980) − f0(980) Mixing in Polarization Phenomena [6]<br />

The a 0 0 (980) − f0(980) mixing as a threshold phenomenon was discovered theoretically<br />

in 1979 in our work [6]. Now it is timely to study this phenomenon experimentally. 1<br />

1 In Ref. [7] the search program <strong>of</strong> the a 0 0 (980) − f0(980) mixing at the C/τ factory has been proposed.<br />

Recently the VES Collaboration published the data on the first effect <strong>of</strong> the a 0 0(980) − f0(980) mixing,<br />

f1(1420) → π 0 a 0 0 (980) → π0 f0(980) → 3π [8], in agreement with our calculation 1981 [6].<br />

31

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!