24.12.2012 Views

References - Bogoliubov Laboratory of Theoretical Physics - JINR

References - Bogoliubov Laboratory of Theoretical Physics - JINR

References - Bogoliubov Laboratory of Theoretical Physics - JINR

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Γ p 1<br />

0.15<br />

0.125<br />

0.1<br />

0.075<br />

0.05<br />

0.025<br />

0<br />

-0.025<br />

Burkert-I<strong>of</strong>fe<br />

S<strong>of</strong>fer-Teryaev<br />

CLAS EG1b<br />

CLAS EG1a<br />

HERMES<br />

SLAC E143<br />

RSS<br />

GDH slope<br />

Ji, χPt<br />

Bernard, χPt<br />

Poly Fit<br />

-0.01<br />

-0.02<br />

-0.03<br />

-0.04<br />

-0.05<br />

0 1 2 3 0 0.1 0.2 0.3 -0.06<br />

Q 2 (GeV/c) 2<br />

0.01<br />

0<br />

(per nucleon)<br />

Γ d 1<br />

0.06<br />

0.04<br />

0.02<br />

0<br />

-0.02<br />

-0.04<br />

-0.06<br />

Burkert-I<strong>of</strong>fe<br />

S<strong>of</strong>fer-Teryaev<br />

CLAS EG1b<br />

CLAS EG1a<br />

HERMES<br />

SLAC E143<br />

RSS<br />

GDH slope<br />

Ji, χPt<br />

Bernard, χPt<br />

Poly Fit<br />

-0.01<br />

-0.02<br />

-0.03<br />

-0.04<br />

-0.05<br />

-0.06<br />

-0.07<br />

0 1 2 3 0 0.1 0.2 0.3<br />

Q 2 (GeV/c) 2<br />

(a) (b)<br />

Figure 2: (a) Γ p<br />

1 as a function <strong>of</strong> Q2 . (b) Γ d 1 as a function <strong>of</strong> Q2 . The EG1a [7], SLAC [8] and<br />

Hermes data [9] are shown for comparison. The filled circles represent the present data, including an<br />

extrapolation over the unmeasured part <strong>of</strong> the x spectrum using a model <strong>of</strong> world data.<br />

Treating the deuteron as the incoherent sum <strong>of</strong> a<br />

proton and a neutron and correcting for the D-state,<br />

Γ d 1(Q 2 )= 1<br />

2 (1 − 1.5ωD) � Γ p<br />

1(Q 2 )+Γ n 1(Q 2 ) � , (6)<br />

one finds that Γ d 1 (Q2 )=−0.451Q 2 +3.26Q 4 .ThelowQ 2<br />

results for Γ p<br />

1 and Γ d 1 have been fit to a function <strong>of</strong> the<br />

form aQ 2 + bQ 4 + cQ 6 + dQ 8 where a is fixed at −0.455<br />

(proton) and −0.451 (deuteron) by the GDH sum rule.<br />

For the proton, b =3.81 ± 0.31 (stat) +0.44 − 0.57<br />

(syst) is extracted and for the deuteron, b =2.91 ± 0.52<br />

(stat) ±0.69 (syst) was obtained, both consistent with<br />

the Q 4 term predicted by Ji et.al.<br />

Our fit is shown in the right-hand panel <strong>of</strong> plots in<br />

γ p 0 (10 -4 fm 4 )<br />

3<br />

2<br />

1<br />

0<br />

-1<br />

-2<br />

-3<br />

-4<br />

-5<br />

0.01<br />

0 0.2 0.4 0.6<br />

0<br />

Kao et al, O(p 3 )+Δ(ε 3 )<br />

Kao et al, O(p 3 )+O(p 4 )<br />

MAID 2003 (π)<br />

Bernard et al.<br />

Models<br />

syst_err_expt<br />

syst_err_extr<br />

Mainz<br />

EG1b Data<br />

EG1b Data+extr.<br />

10 -1<br />

0.02<br />

0.015<br />

0.01<br />

0.005<br />

-0.005<br />

-0.01<br />

-0.015<br />

-0.02<br />

1<br />

Q 2 (GeV/c) 2<br />

Figure 3: Generalized forward spin<br />

polarizability γ p<br />

0 as a function <strong>of</strong> Q2<br />

for the full integral (closed circles)<br />

and the measured portion <strong>of</strong> the integral<br />

(open circles)<br />

Figs. 2 along with Ji’s prediction. We find that the Q 6 term becomes important even<br />

below Q 2 =0.1GeV 2 and that this term needs to be included in the χPT calculations in<br />

order to extend the range <strong>of</strong> their validity.<br />

Higher moments <strong>of</strong> g1 are interesting as well. In our kinematic domain these moments<br />

emphasize the resonance region over DIS kinematics because <strong>of</strong> extra factors <strong>of</strong> x in the<br />

integrand. The generalized forward spin polarizability <strong>of</strong> the nucleon is given by [13]<br />

γ0(Q 2 2 16αM<br />

)=<br />

Q6 � x0<br />

x 2<br />

�<br />

g1(x, Q 2 ) − Q2x2 4M 2 g2(x, Q 2 �<br />

) dx, (7)<br />

0<br />

where α is the fine structure constant. First results for the generalized forward spin<br />

polarizability <strong>of</strong> the proton for a range <strong>of</strong> Q2 from 0.05 to 4 GeV2 are shown in Fig. 3<br />

Our data lie closest to the MAID 2003 [14] model, which is a phenomenological fit to<br />

single pion production data and includes only the resonance region. However, since γ0 is<br />

weighted by an additional factor <strong>of</strong> x2 compared to Γ1, the contribution to the integral<br />

from the DIS part <strong>of</strong> the spectrum is rather small. The MAID model follows the trend <strong>of</strong><br />

the data but significantly underpredicts them numerically.<br />

296<br />

0<br />

γ p 0* Q6 /(16αM 2 )

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!