27.03.2024 Views

PuK - Process Technology & Components 2024

A technical trade magazine with a history of more than 60 years.

A technical trade magazine with a history of more than 60 years.

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Vacuum technology<br />

Screw spindle vacuum pumps<br />

Fig. 9: Mass flow rate of a pure Couette<br />

flow through a channel with surface<br />

structures related to the respective<br />

mass flow rate with technically smooth<br />

walls as a function of the pressure p<br />

for different profile angles α = β.<br />

sure p for air at T = 293 K. The error<br />

bars show the maximum statistical<br />

uncertainty of the results.<br />

It can be seen that - as with the<br />

pressure-driven flow - a reduction<br />

in the mass flow rate at same<br />

minimal gap height can also be<br />

achieved with a shear-driven flow<br />

using surface structures. The<br />

smaller the pressure, the greater<br />

the effect, whereas the effect disappears<br />

at high pressures. Here<br />

too, the greatest reduction of<br />

about 30 % can be achieved for<br />

profile angles α = β = 30°.<br />

Conclusion and outlook<br />

The theoretical investigations<br />

suggest that a microscopic surface<br />

structure in the low-pressure<br />

range can achieve a significant reduction<br />

of up to 30 % in the gap<br />

mass flow rates in vacuum pumps<br />

without jeopardising operational<br />

safety. On the one hand, this<br />

can be used to ensure that the<br />

machine has a significantly better<br />

suction speed at lower suction<br />

pressure ranges with the same<br />

gap height, as the measurement<br />

results from Dreifert and Müller<br />

show with regard to the change<br />

in gap height. On the other hand,<br />

the idea of Kösters and Eickhoff<br />

could be pursued, with which the<br />

gap height on the low-pressure<br />

side of the machine is increased<br />

in order to reduce over-compression<br />

at high suction pressures.<br />

As the surface structure produces<br />

a significantly greater throttling<br />

effect, particularly at low<br />

suction pressures, but has hardly<br />

any effect at high suction pres-<br />

sures, over-compression can be<br />

reduced without the machine deteriorating<br />

at low suction pressures.<br />

Due to the great potential for<br />

improvement, the applicability<br />

of surface structures in rarefied<br />

gas flows is being investigated in<br />

more detail in a current cooperative<br />

research project between<br />

the Chair of Fluidics and the Institute<br />

of Machining <strong>Technology</strong><br />

at TU Dortmund University. In the<br />

course of the project, the shape of<br />

the structure is being optimised<br />

in order to achieve the greatest<br />

possible throttling effect on the<br />

one hand and to enable efficient<br />

production on the other hand. A<br />

central challenge in production is<br />

the small profile depth of the surface<br />

structure - this is referred to<br />

as micro-machining. The dimensions<br />

of the burrs can be of the<br />

same order of magnitude as the<br />

profile depth. For this reason, a<br />

special tool is developed with the<br />

aid of a finite element chip formation<br />

simulation, whereby various<br />

geometric adjustments to the<br />

tool can be simulatively investigated<br />

to minimise burr formation.<br />

The most promising tool variants<br />

are then manufactured and<br />

used to prepare samples with the<br />

identified surface structures. On<br />

the one hand, these are analysed<br />

metrologically, which enables the<br />

chip formation simulation to be<br />

validated, and on the other hand<br />

they are used on a vacuum test<br />

rig in which the throttling effect<br />

can be investigated.<br />

Acknowledgements<br />

Funded by the Deutsche<br />

Forschungsgemeinschaft (DFG,<br />

German Research Foundation).<br />

Gefördert durch die Deutsche<br />

Forschungsgemeinschaft (DFG) –<br />

Projektnummer 513663608.<br />

Bibliography<br />

[Bir94] Bird, G. A.: Molecular gas<br />

dynamics and the direct simulation<br />

of gas flows (Clarendon<br />

Press, Oxford, 1994).<br />

[Brü21] Brümmer, B.; Pleskun,<br />

H.: Verfahren und Vorrichtung<br />

zur Beeinflussung verdünnter<br />

Gasströmungen mit Hilfe von<br />

Rauheiten aufweisenden Oberflächen,<br />

insbesondere an Vakuumpumpen,<br />

MEMS, Patent, DE<br />

102021002290, 2021.<br />

[Dre14] Dreifert, T.; Müller, R.:<br />

Screw Vacuum pumps - The state<br />

of the art: International Conference<br />

on Screw machines 2014:<br />

VDI-Berichte 2228, pp. 29-42<br />

(VDI-Verlag, 2014).<br />

[Jou18] Jousten, K.: Wutz - Handbuch<br />

der Vakuumtechnik, Vol. 12<br />

(Vieweg+Teubner,<br />

2018).<br />

Symbols and abbreviations<br />

symbol unit explanation<br />

b m gap width<br />

h m gap height<br />

L m gap length<br />

.<br />

m kg⁄s mass flow rate<br />

m kg mass<br />

p Pa pressure<br />

t s time<br />

T K temperature<br />

U m⁄s wall velocity<br />

α ° profile angle<br />

β ° profile angle<br />

Λ m profile depth<br />

ρ kg⁄m 3 density<br />

index or abbreviation<br />

eff<br />

suction<br />

Wiesbaden,<br />

[Kös06] Kösters, H.; Eickhoff, J.:<br />

Trockene Schraubenvakuumpumpe<br />

mit hoher innerer Verdichtung,<br />

Schraubenmaschinen 2006: VDI-<br />

Berichte 1932, pp. 423-428 (VDI-<br />

Verlag, 2006).<br />

1 inlet<br />

2 outlet<br />

explanation<br />

effective value<br />

suction value<br />

+ positive direction<br />

- negative direction<br />

The Authors:<br />

Sven Brock 1 , Heiko Pleskun 1 , Gero Polus 2 , Jannis Saelzer 2 ,<br />

Prof. Dr.-Ing. Prof. h.c. Dirk Biermann 2 , Prof. Dr.-Ing. Andreas Brümmer 1<br />

1<br />

Chair of Fluidics, TU Dortmund University, 44227 Dortmund, Germany<br />

https://ft.mb.tu-dortmund.de/<br />

2<br />

Institute of Machining <strong>Technology</strong>, TU Dortmund University,<br />

44227 Dortmund, Germany<br />

https://isf.mb.tu-dortmund.de/<br />

[Moe23] Moesch, T. W. et al.:<br />

Thermodynamic analysis of a<br />

conical screw spindle compressor<br />

for R718: ICR2023 - 26th International<br />

Congress of Refrigeration,<br />

p. 012016, 2023.<br />

[Ple22a] Pleskun, H.; Bode, T.,<br />

Brümmer, B.: Couette flow in<br />

a rectangular channel in the<br />

whole range of the gas rarefaction,<br />

Physics of Fluids, Vol. 34, p.<br />

032004, 2022.<br />

[Ple22b] Pleskun, H.; Brümmer,<br />

B.: Gas-surface interactions of a<br />

Couette-Poiseuille flow in a rectangular<br />

channel, Physics of Fluids,<br />

Vol. 34, p. 082009, 2022.<br />

[Saz20] Sazhin, O.: Rarefied gas<br />

flow through a rough channel<br />

into a vacuum: Microfluid Nanofluid,<br />

Vol. 24, 2020.<br />

PROCESS TECHNOLOGY & COMPONENTS <strong>2024</strong><br />

51

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!