20.02.2013 Views

download pdf - Institut für Umweltphysik - Ruprecht-Karls-Universität ...

download pdf - Institut für Umweltphysik - Ruprecht-Karls-Universität ...

download pdf - Institut für Umweltphysik - Ruprecht-Karls-Universität ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

6 CONTENTS<br />

2.4.8 Two dimensional concentration distributions of a NO2 Emission plume from a<br />

point source derived by Airborne DOAS Tomography . . . . . . . . . . . . . . 65<br />

2.4.9 Development of a computer tool for the inversion and optimization of airborne<br />

tomographic DOAS measurements (Tomolab2) . . . . . . . . . . . . . . . . . . 66<br />

2.5 Satellite Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69<br />

2.5.1 Quantifying NOx from lightning using satellite data . . . . . . . . . . . . . . . 72<br />

2.5.2 Evaluation of global tropospheric NO2 from SCIAMACHY . . . . . . . . . . . 73<br />

2.5.3 Development of a radiative transfer model . . . . . . . . . . . . . . . . . . . . . 74<br />

2.5.4 Retrieval of methane from SCIAMACHY onboard ENVISAT . . . . . . . . . . 75<br />

2.5.5 Retrieval of carbon monoxide from SCIAMACHY onboard ENVISAT . . . . . 76<br />

2.5.6 Retrieval of cloud parameters using SCIAMACHY and GOME data . . . . . . 77<br />

2.5.7 Satellite validation using the airborne multi axis DOAS instrument . . . . . . . 78<br />

2.5.8 Analysis of global long-term tropospheric and stratospheric BrO from GOME<br />

measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79<br />

2.5.9 Enhanced SO2 Column Densities Observed Over South East Asian Region: Consequence<br />

of El Niño . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80<br />

2.5.10 Retrieving vertical profiles of stratospheric trace gases from satellite observations 81<br />

2.5.11 Comparison of OClO nadir measurements from SCIAMACHY and GOME . . 82<br />

2.5.12 Identification of tropospheric emissions sources from satellite observations: Synergistic<br />

use of HCHO and NO2 trace gas measurements . . . . . . . . . . . . . 83<br />

2.5.13 Trace gas profile retrieval from SCIAMACHY limb measurements . . . . . . . 84<br />

2.5.14 Mie theory based characterization and modeling of atmospheric aerosols . . . . 85<br />

2.5.15 Satellite observations of the global water vapor distribution . . . . . . . . . . . 86<br />

2.5.16 Analysis of MAXDOAS observations in various observing geometries . . . . . . 87<br />

2.5.17 Comparison of Radiative Transfer Models . . . . . . . . . . . . . . . . . . . . . 88<br />

2.5.18 GOME observations of stratospheric trace gas distributions during the split<br />

vortex event in the Antarctic winter 2002 . . . . . . . . . . . . . . . . . . . . . 89<br />

2.5.19 Comparison of GOME NO2 retrievals analysed by different scientific groups . . 90<br />

2.6 MarHal - Modeling of marine and halogen chemistry . . . . . . . . . . . . . . . . . . . 95<br />

2.6.1 Modeling the possible role of iodine oxides in new particle formation . . . . . . 99<br />

2.6.2 Ozone Depletion Events in the Polar Boundary Layer in Spring: A Model Study 100<br />

2.6.3 Modeling Organic Films on Atmospheric Aerosol Particles and their Influence<br />

on Cloud Microphysics and Chemistry . . . . . . . . . . . . . . . . . . . . . . . 101<br />

2.6.4 Impact of reactive bromine chemistry in the troposphere . . . . . . . . . . . . . 102<br />

2.7 Carbon Cycle Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105<br />

2.7.1 Global long-term observations of Radiocarbon in atmospheric CO2, revisited . 108<br />

2.7.2 Simulating Bomb Radiocarbon: Implications for the Global Carbon Cycle . . . 109<br />

2.7.3 Coupling and modernisation of the Heidelberg Greenhouse Gases and CO - GC<br />

systems for continuous measurements . . . . . . . . . . . . . . . . . . . . . . . 110<br />

2.7.4 Investigating CO2, CO and Fossil Fuel CO2 in Heidelberg . . . . . . . . . . . . 111<br />

3 Terrestrial Systems 115<br />

3.1 Soil Physics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117<br />

3.1.1 Estimation of effective hydraulic parameters for heterogeneous porous media . 122<br />

3.1.2 X-ray attenuation techniques to study the dynamics of water in porous media . 123<br />

3.1.3 Fingered Flow Through Initially Dry Porous Hele-Shaw cell . . . . . . . . . . . 124<br />

3.1.4 Near Infrared Imaging Spectroscopy of Water States in Porous Silicate Media . 125<br />

3.1.5 Evaporation Experiment to determine Soil Hydraulic Properties . . . . . . . . 126<br />

3.1.6 Free Parameterisation of Soil Hydraulic Properties . . . . . . . . . . . . . . . . 127<br />

3.1.7 Modelling water flow and solute transport in heterogeneous soil . . . . . . . . . 128<br />

3.1.8 Unsaturated Flow in Strongly Heterogeneous Porous Media . . . . . . . . . . . 129<br />

3.1.9 Assessing temporal changes in volumetric soil water content from ground-penetrating<br />

radar profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130<br />

3.1.10 Monitoring Field Tracer Experiment with Ground Penetrating Radar and Time<br />

Domain Reflectometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131<br />

3.1.11 Efficient reconstruction of dispersive dielectric profiles using TDR . . . . . . . 132<br />

3.1.12 3D Full-wave, electromagnetic model of ground penetrating radar systems . . . 133<br />

3.1.13 Simulation and Observation of an Evanescent Wave in Ground Penetrating<br />

Radar Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134<br />

3.2 Ice and Climate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!