24.03.2013 Views

Linear Programming Lecture Notes - Penn State Personal Web Server

Linear Programming Lecture Notes - Penn State Personal Web Server

Linear Programming Lecture Notes - Penn State Personal Web Server

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

A basic feasible solution for our artificial problem would let xa1 = 12 and xa2 = 20. The<br />

pertinent matrices in this case are:<br />

<br />

1 2 −1 0 1 0 12<br />

A =<br />

b =<br />

2 3 0 −1 0 1 20<br />

<br />

1 0 1 2 −1 0<br />

B = N =<br />

B<br />

0 1 2 3 0 −1<br />

−1 <br />

12<br />

b =<br />

20<br />

⎡ ⎤<br />

0<br />

1 ⎢<br />

cB = cN = ⎢0<br />

⎥<br />

1 ⎣0⎦<br />

0<br />

c T BB −1 b = 32 c T BB −1 N − c T N = 3 5 −1 −1 <br />

We can construct an initial tableau for this problem as:<br />

⎡<br />

⎤<br />

z x1 x2 s1 s2 xa1<br />

xa2 RHS<br />

z ⎢<br />

(6.7) ⎢ 1 3 5 −1 −1 0 0 32 ⎥<br />

xa1<br />

⎣ 0 1 2 −1 0 1 0 12 ⎦<br />

0 2 3 0 −1 0 1 20<br />

xa2<br />

This is a minimization problem, so if zj −cj > 0, then entering xj will improve (decrease) the<br />

objective value because ∂z/∂xj < 0. In this case, we could enter either x1 or x2 to improve<br />

the objective value. Let’s assume we enter variable x1. Performing the minimum ratio test<br />

we see:<br />

(6.8)<br />

z<br />

xa1<br />

xa2<br />

x1<br />

⎡<br />

⎢<br />

⎣<br />

z x1 x2 s1 s2 xa1 xa2 RHS<br />

1 3 5 −1 −1 0 0 32<br />

0 1 2 −1 0 1 0 12<br />

0 2 3 0 −1 0 1 20<br />

⎤<br />

⎥<br />

⎦<br />

MRT(x1)<br />

12<br />

20/2 = 10<br />

Thus xa2 leaves the basis and x1 enters. The new tableau becomes:<br />

⎡<br />

⎤<br />

z x1 x2 s1 s2 xa1<br />

xa2 RHS<br />

z ⎢<br />

(6.9) ⎢ 1 0 1/2 −1 1/2 0 −3/2 2 ⎥<br />

xa1<br />

⎣ 0 0 1/2 −1 1/2 1 −1/2 2 ⎦<br />

0 1 3/2 0 −1/2 0 1/2 10<br />

In this case, we see that x2 should enter the basis. Performing the minimum ratio test, we<br />

obtain:<br />

(6.10)<br />

z<br />

xa1<br />

x1<br />

⎡<br />

z<br />

⎢ 1<br />

⎢<br />

⎣ 0<br />

0<br />

x1<br />

0<br />

0<br />

1<br />

x2<br />

1/2<br />

1/2<br />

3/2<br />

s1<br />

−1<br />

−1<br />

0<br />

s2<br />

1/2<br />

1/2<br />

−1/2<br />

xa1<br />

0<br />

1<br />

0<br />

xa2<br />

−3/2<br />

−1/2<br />

1/2<br />

⎤<br />

RHS<br />

2 ⎥<br />

2 ⎦<br />

10<br />

MRT(x2)<br />

4<br />

20/3<br />

Thus we see that xa2 leaves the basis and we obtain:<br />

⎡<br />

⎤<br />

z x1 x2 s1 s2 xa1<br />

xa2 RHS<br />

z ⎢<br />

(6.11) ⎢ 1 0 0 0 0 −1 −1 0 ⎥<br />

x2 ⎣ 0 0 1 −2 1 2 −1 4 ⎦<br />

0 1 0 3 −2 −3 2 4<br />

x1<br />

93

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!