24.03.2013 Views

Linear Programming Lecture Notes - Penn State Personal Web Server

Linear Programming Lecture Notes - Penn State Personal Web Server

Linear Programming Lecture Notes - Penn State Personal Web Server

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Example 6.13. Suppose we solve the problem from Example 6.3 using the Big-M method.<br />

Our problem is:<br />

(6.24)<br />

min x1 + 2x2<br />

s.t. x1 + 2x2 ≥ 12<br />

2x1 + 3x2 ≥ 20<br />

x1, x2 ≥ 0<br />

Again, this problem has standard form:<br />

(6.25)<br />

min x1 + 2x2<br />

s.t. x1 + 2x2 − s1 = 12<br />

2x1 + 3x2 − s2 = 20<br />

x1, x2, s1, s2 ≥ 0<br />

To execute the Big-M method, we’ll choose M = 300 which is larger than 100 times<br />

the largest coefficient of the objective function of the original problem. Our new problem<br />

becomes:<br />

min x1 + 2x2 + 300xa1 + 300xa2<br />

s.t. x1 + 2x2 − s1 + xa1 = 12<br />

(6.26)<br />

2x1 + 3x2 − s2 + xa2 = 20<br />

x1, x2, s1, s2, xa1, xa2 ≥ 0<br />

Since this is a minimization problem, we add Me T xa to the objective function. Letting xa1<br />

and xa2 be our initial basis, we have the series of tableaux:<br />

TABLEAU I<br />

⎡<br />

z<br />

xa1<br />

xa2<br />

⎢<br />

⎣<br />

TABLEAU II<br />

⎡<br />

z<br />

xa1<br />

x1<br />

⎢<br />

⎣<br />

z x1 x2 s1 s2 xa1 xa2 RHS<br />

1 899 1498 −300 −300 0 0 9600<br />

0 1 2 −1 0 1 0 12<br />

0 2 3 0 −1 0 1 20<br />

z x1 x2 s1 s2 xa1 xa2 RHS<br />

1 0 299/2 −300 299/2 0 −899/2 610<br />

0 0 1/2 −1 1/2 1 −1/2 2<br />

0 1 3/2 0 −1/2 0 1/2 10<br />

TABLEAU III<br />

⎡<br />

z<br />

z ⎢ 1<br />

x2 ⎣ 0<br />

x1<br />

0<br />

0<br />

x2<br />

0<br />

1<br />

s1<br />

−1<br />

−2<br />

s2<br />

0<br />

1<br />

xa1<br />

−299<br />

2<br />

xa2<br />

−300<br />

−1<br />

RHS<br />

12<br />

4<br />

0 1 0 3 −2 −3 2 4<br />

x1<br />

⎤<br />

⎥<br />

⎦<br />

⎤<br />

⎥<br />

⎦<br />

MRT(x1)<br />

12<br />

20/2 = 10<br />

⎤<br />

⎥<br />

⎦<br />

MRT(x1)<br />

4<br />

20/3<br />

It is worth noting that this is essentially the same series of tableau we had when executing<br />

the Two-Phase method, but we have to deal with the large M coefficients in our arithmetic.<br />

101

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!