30.08.2013 Views

Level 6 Graduate Diploma in Engineering (9210-01) - City & Guilds

Level 6 Graduate Diploma in Engineering (9210-01) - City & Guilds

Level 6 Graduate Diploma in Engineering (9210-01) - City & Guilds

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Unit 103 Hydraulics and hydrology<br />

Assessment Criteria<br />

Outcome 1 Identify and process solutions for problems <strong>in</strong> fluid<br />

mechanics, pipe flow, rotodynamic mach<strong>in</strong>es and open<br />

channel flow<br />

The learner can:<br />

1. Determ<strong>in</strong>e fluid cont<strong>in</strong>uity and solve problems us<strong>in</strong>g Bernoulli’s equation.<br />

2. Apply energy and momentum pr<strong>in</strong>ciples <strong>in</strong> an eng<strong>in</strong>eer<strong>in</strong>g context.<br />

3. Assess free and forced vortex flow.<br />

4. Assess steady flow <strong>in</strong> pipes <strong>in</strong> respect of:<br />

a pipe friction<br />

b velocity distributions<br />

c lam<strong>in</strong>ar and turbulent flows <strong>in</strong> smooth and rough pipes<br />

d Poiseuille’s law<br />

e Darcy’s law<br />

5. Exam<strong>in</strong>e the relationship between friction factor, Reynolds number and relative roughness.<br />

6. Exam<strong>in</strong>e local losses <strong>in</strong> pipe systems due to friction.<br />

7. Analyse pipe networks us<strong>in</strong>g Hardy Cross method and Cornish method.<br />

8. Determ<strong>in</strong>e the reasons for unsteady pipe flow <strong>in</strong> respect of:<br />

a frictionless <strong>in</strong>compressible behaviour<br />

b frictionless compressible behaviour<br />

c surge tanks<br />

9. Describe the one-dimensional theory of:<br />

a pumps<br />

b turb<strong>in</strong>es<br />

10. Classify pumps and turb<strong>in</strong>es.<br />

11. Assess pumps and turb<strong>in</strong>es with respect to:<br />

a characteristics<br />

b specific speed<br />

c cavitations<br />

12. Select a pump for a range of pipe systems.<br />

13. Assess steady flow <strong>in</strong> an open channel us<strong>in</strong>g Chezy and Mann<strong>in</strong>g equations.<br />

14. Design non-erodible channels.<br />

15. Recognise the effect of sediment transportation <strong>in</strong> open channels.<br />

16. Analyse gradual varied non-uniform flow <strong>in</strong> channels.<br />

17. Apply energy and momentum pr<strong>in</strong>ciples to rapidly varied flow <strong>in</strong> open channels <strong>in</strong> respect of:<br />

a hydraulic structures<br />

b short channel transitions<br />

c th<strong>in</strong> weirs<br />

d flow gaug<strong>in</strong>g structures<br />

e hydraulic jump<br />

18. Derive formulae us<strong>in</strong>g dimensional analysis.<br />

19. Investigate the criteria, parameters and scales for physical models of:<br />

a hydraulic structures.<br />

b rivers etc.<br />

20. Ascerta<strong>in</strong> the relative merits of physical and mathematical models.<br />

<strong>Level</strong> 6 <strong>Graduate</strong> <strong>Diploma</strong> <strong>in</strong> Eng<strong>in</strong>eer<strong>in</strong>g (<strong>9210</strong>-<strong>01</strong>) 33

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!