12.07.2015 Views

DIFFERENTIAL GEOMETRY: A First Course in Curves and Surfaces

DIFFERENTIAL GEOMETRY: A First Course in Curves and Surfaces

DIFFERENTIAL GEOMETRY: A First Course in Curves and Surfaces

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

§4. Calculus of Variations <strong>and</strong> <strong>Surfaces</strong> of Constant Mean Curvature 103Now we compute: Recall<strong>in</strong>g that d dt ‖f(t)‖ = f(t) · f ′ (t)<strong>and</strong> sett<strong>in</strong>g x = x ∗ + εξ, wehave‖f(t)‖d1 (dε∣ ‖x u × x v ‖ =(ξuε=0‖x ∗ u × x ∗ × x ∗ v + x ∗ u × ξ v ) · (x ∗ u × x ∗ v) )v‖Next we observe that=(ξ u × x ∗ v + x ∗ u × ξ v ) · n.(ξ u × x ∗ v) · n = ( (ξ × x ∗ v) · n ) u − (ξ × x∗ uv) · n − (ξ × x ∗ v) · n u(x ∗ u × ξ v ) · n = ( (x ∗ u × ξ) · n ) v − (x∗ uv × ξ) · n − (x ∗ u × ξ) · n v ,<strong>and</strong> so, add<strong>in</strong>g these equations, we obta<strong>in</strong>(ξ u × x ∗ v + x ∗ u × ξ v ) · n = ( (ξ × x ∗ v) · n ) u + ( (x ∗ u × ξ) · n ) v − ( (ξ × x ∗ v) · n u +(x ∗ u × ξ) · n v)= ( (ξ × x ∗ v) · n ) u − ( (ξ × x ∗ u) · n ) v − ( (ξ × x ∗ v) · n u +(x ∗ u × ξ) · n v)= ( (ξ × x ∗ v) · n ) u − ( (ξ × x ∗ u) · n ) v − ξ · (x ∗ v × n u + n v × x ∗ u).At the last step, we’ve used the identity (U × V) · W =(W × U) · V =(V × W) · U. Theappropriate way to <strong>in</strong>tegrate by parts <strong>in</strong> the two-dimensional sett<strong>in</strong>g is to apply Green’s Theorem,Theorem 2.6 of the Appendix, <strong>and</strong> so we let P =(ξ × x ∗ u) · n <strong>and</strong> Q =(ξ × x ∗ v) · n <strong>and</strong> obta<strong>in</strong>∫∫(ξ u × x ∗ v + x ∗ u × ξ v ) · ndudvD∫∫ ( ((ξ= × x∗v ) · n ) − ( (ξ × x ∗ uu) · n ) ) ∫∫dudv − ξ · (x ∗vv × n u + n v × x ∗ u)dudvD } {{ } } {{ }DQ uP v∫=∂D(ξ × x ∗ u) · n du +(ξ × x ∗} {{ }v) · n} {{ }PQ∫∫dv − ξ · (x ∗ v × n u + n v × x ∗ u)dudv.DS<strong>in</strong>ce ξ = 0 on ∂D, the l<strong>in</strong>e <strong>in</strong>tegral vanishes. Us<strong>in</strong>g the equations (††) onp.56, we f<strong>in</strong>d thatx ∗ v × n u = a(x ∗ u × x ∗ v) <strong>and</strong> n v × x ∗ u = d(x ∗ u × x ∗ v), so, at long last, we obta<strong>in</strong>∫∫∫∫ddε∣ ‖x u × x v ‖dudv = (ξ u × x ∗ v + x ∗ u × ξ v ) · ndudvε=0 DD∫∫= − ξ · (x ∗ v × n u + n v × x ∗ u)dudvD∫∫∫∫= − (a + d)ξ · (x ∗ u × x ∗ v)dudv = − 2Hξ · ndA,DDs<strong>in</strong>ce H = 1 2 trS P .We conclude from this, us<strong>in</strong>g a two-dimensional analogue of Exercise 2, the follow<strong>in</strong>gTheorem 4.2. Among all (parametrized) surfaces with a given boundary curve, the one ofleast area is m<strong>in</strong>imal, i.e., has H =0.This result, <strong>in</strong>deed, is the orig<strong>in</strong> of the term<strong>in</strong>ology.Next, suppose we wish to characterize those closed surfaces of least area conta<strong>in</strong><strong>in</strong>g a givenvolume V .Tomake a parametrized surface closed, we require that x(u, v) =x 0 for all (u, v) ∈ ∂D.But how do we express the volume constra<strong>in</strong>t <strong>in</strong> terms of x? The answer comes from the Divergence

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!