12.07.2015 Views

DIFFERENTIAL GEOMETRY: A First Course in Curves and Surfaces

DIFFERENTIAL GEOMETRY: A First Course in Curves and Surfaces

DIFFERENTIAL GEOMETRY: A First Course in Curves and Surfaces

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

§3. The Codazzi <strong>and</strong> Gauss Equations <strong>and</strong> the Fundamental Theorem of Surface Theory 57Analogously, compar<strong>in</strong>g the <strong>in</strong>dicated components of x uvv = x vvu ,wef<strong>in</strong>d:(x u ): (Γuv) u v +ΓuvΓ u uv u +ΓuvΓ v vv u − mc =(Γvv) u u +Γ u(x v ): (Γuv) v v +ΓuvΓ u uv v − md =(Γvv) v u +ΓvvΓ uuu v − nb(n): m v + mΓuv u + nΓuv v = n u + lΓvv u + mΓvv.vThe two equations com<strong>in</strong>g from the normal component give us theCodazzi equationsvvΓ u uu +Γ vvvΓ u uv − nal v − m u = lΓ u uv + m ( Γ v uv − Γ u uu)− nΓvuum v − n u = lΓ uvv + m ( Γ vvv − Γ u uv)− nΓvuv .ln − m2Us<strong>in</strong>g K =EG − F 2 <strong>and</strong> the formulas above for a, b, c, <strong>and</strong> d, the four equations <strong>in</strong>volv<strong>in</strong>g the x u<strong>and</strong> x v components yield theGauss equationsEK = ( Γuuv )v − ( Γuvv )u +Γu uuΓuv v +ΓuuΓ v vFK = ( Γuvu )u − ( Γuuu )v +Γv uvΓuv u − ΓuuΓ v vvuFK = ( Γuvv )v − ( Γvvv )u +Γu uvΓuv v − ΓvvΓ uuuvGK = ( Γ uvv)u − ( Γ u uv)v +Γu vvΓ u uu +Γ vvvΓ u uv − ( Γ u uvFor example, to derive the first, we use the equation (♦) above:(Γvuu)v − ( Γ v uvvv − Γ u uvΓ v uu − ( Γ v uv)u +Γu uuΓ v uv +Γ v uuΓ vvv − Γ u uvΓ v uu − ( Γ v uv) 2 = ld − mb=) 2) 2 − Γvuv Γ uvv.1 ( ) E(ln − m 2 )l(−mF + nE)+m(lF − mE) =EG − F 2 EG − F 2 = EK.In an orthogonal parametrization (F = 0), we leave it to the reader to check <strong>in</strong> Exercise 2 thatK = − 1 ( (2 √ Ev) (√EG+ Gu) )(∗)√ .EG v EG uOne of the crown<strong>in</strong>g results of local differential geometry is the follow<strong>in</strong>gTheorem 3.1 (Gauss’s Theorema Egregium). The Gaussian curvature is determ<strong>in</strong>ed by onlythe first fundamental form I. That is, K can be computed from just E, F , G, <strong>and</strong> their first <strong>and</strong>second partial derivatives.Proof. From any of the Gauss equations, we see that K can be computed by know<strong>in</strong>g any oneof E, F , <strong>and</strong> G, together with the Christoffel symbols <strong>and</strong> their derivatives. But the equations (‡)show that the Christoffel symbols (<strong>and</strong> hence any of their derivatives) can be calculated <strong>in</strong> termsof E, F , <strong>and</strong> G <strong>and</strong> their partial derivatives. □Corollary 3.2. If two surfaces are locally isometric, their Gaussian curvatures at correspond<strong>in</strong>gpo<strong>in</strong>ts are equal.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!