12.07.2015 Views

DIFFERENTIAL GEOMETRY: A First Course in Curves and Surfaces

DIFFERENTIAL GEOMETRY: A First Course in Curves and Surfaces

DIFFERENTIAL GEOMETRY: A First Course in Curves and Surfaces

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

116 SELECTED ANSWERS2.4.8 Only circles. By Exercise 2 such a curve will also have constant curvature, <strong>and</strong> byMeusnier’s formula, Proposition 2.5, the angle φ between N <strong>and</strong> n = x is constant.Differentiat<strong>in</strong>g x · N = cos φ = const yields τ(x · B) =0. Either τ =0,<strong>in</strong>which casethe curve is planar, or else x·B =0,<strong>in</strong>which case x = ±N, soτ = N ′ ·B = ±x ′ ·B =±T · B =0. (In the latter case, the curve is a great circle.)3.1.1 a. 2π s<strong>in</strong> u 03.1.3 a. 1, b.,c. 3.3.2.1 a. The semicircle centered at (2, 0) of radius √ 5; d(P, Q) =ln ( (3 + √ 5)/2 ) .3.2.4 Show first that for an arclength parametrization κ g = u ′ (s)/v(s)+θ ′ (s). Take a circleof the form α(t) = ( a + b cos t, b(s<strong>in</strong> t +1) ) <strong>and</strong> show υ(t) =‖α ′ (t)‖ =1/(s<strong>in</strong> t + 1).3.2.9 κ g = coth R3.3.4 We have κ n =II(e 1 , e 1 )=−de 3 (e 1 ) · e 1 = ω 13 (e 1 ). S<strong>in</strong>ce e 3 = s<strong>in</strong> θe 2 + cos θe 3 ,the calculations of Exercise 3 show that ω 13 = s<strong>in</strong> θω 12 + cos θω 13 , so ω 13 (e 1 ) =s<strong>in</strong> θω 12 (e 1 )=κ s<strong>in</strong> θ. Here θ is the angle between e 3 <strong>and</strong> e 3 ,sothis agrees with ourprevious result.3.3.7 We have ω 1 = bdu(<strong>and</strong> ω 2 = (a)+ b cos u) dv, so ω 12 = − s<strong>in</strong> udv <strong>and</strong> dω 12 =cos ucos u− cos udu∧ dv = −ω 1 ∧ ω 2 ,soK =b(a + b cos u)b(a + b cos u) .3.4.2 a. Tak<strong>in</strong>g ξ = f gives us ∫ 10 f(t)2 dt =0. S<strong>in</strong>ce f(t) 2 ≥ 0 for all t, iff(t 0 ) ≠0,wehavean <strong>in</strong>terval [t 0 − δ, t 0 + δ] onwhich f(t) 2 ≥ f(t 0 ) 2 /2, <strong>and</strong> so ∫ 10 f(t)2 dt ≥ f(t 0 ) 2 δ>0.3.4.9 y = 1 2 cosh(2x)A.1.1A.1.2A.2.4Consider z = x − y. Then we know that z · v i =0,i =1, 2. S<strong>in</strong>ce {v 1 , v 2 } is a basisfor R 2 , there are scalars a <strong>and</strong> b so that z = av 1 + bv 2 . Then z · z = z · (av 1 + bv 2 )=a(z · v 1 )+b(z · v 2 )=0,soz = 0, asdesired.H<strong>in</strong>t: Take u =( √ a, √ b) <strong>and</strong> v =( √ b, √ a).Let v = ∫ ba f(t) dt. If v ≠ 0, we have ‖v‖2 = v · ∫ ba f(t) dt = ∫ bav · f(t) dt ≤∫ ba ‖v‖‖f(t)‖ dt = ‖v‖ ∫ ba‖f(t)‖ dt (us<strong>in</strong>g the Cauchy-Schwarz <strong>in</strong>equality u · v ≤‖u‖‖v‖), so ‖v‖ ≤ ∫ ba‖f(t)‖ dt, asneeded.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!