20.07.2013 Views

Молодой учёный

Молодой учёный

Молодой учёный

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

8 Математика<br />

«<strong>Молодой</strong> <strong>учёный</strong>» . № 3 (50) . Март, 2013 г.<br />

with period n for i . This time we get interpolation accuracy of order O(h 2 ).<br />

Of course the situation at initial level (k =1) is simpler: we can use for example trapezoidal quadrature formula for any seg-<br />

i i ii i i<br />

ment [A , A2 ] 1 with accuracy OOh(A ( h(A - A1 ) 2 2–<br />

- A1 ) ).<br />

Therefore our numerical algorithm for solving problem (1) – (2) is as follows. Take integer m > 2 and construct uniform<br />

mesh in t with nodes tk = kt, k = 0, 1, 2,...,m, and meshsize t- = T m. Then for k = 0, 1, 2,...,m make the following cycle supposing<br />

that the approximate solution is known yet at previous time-level for i = 0, 1,...,n–1.<br />

1. With the help of values in these points and periodicity we construct the piecewise linear (periodical) interpolant<br />

k<br />

2. For each point (t ,x ), i = 0, 1,…,n -1,<br />

k i+1 2 i = 0, 1,...,n–1, construct trajectories C down to time-level t i+1 2<br />

k–1 like in previous considerations.<br />

They produce cross-points If goes outside segment [0,1] we use periodicity of our data.<br />

2. For each interval compute integral<br />

k-1<br />

Ai+<br />

12 h<br />

i = ∫ r k-1<br />

A<br />

k-1<br />

i-12<br />

I ( t , x) dx<br />

(18)<br />

k-1 k-1<br />

by trapezoid quadrature formula separately at each nonempty subinterval ( Ai- 12, Ai+ 12) ∩ ( xs, xs+<br />

1)<br />

where<br />

is linear.<br />

3. Due to Theorem 1 it is supposed that<br />

I ( t , x) dx.<br />

(19)<br />

xi+<br />

12 h<br />

i ≈ ∫ r<br />

x<br />

k<br />

i-12<br />

Therefore like in (15) – (16) we put<br />

Thus, we complete our cycle which may be executed up to last time-level t m = T.<br />

Condensed form of this algorithm in terms of piecewise linear periodical interpolants is written as follows:<br />

h<br />

k-1<br />

Ai+<br />

12 h<br />

k i k-1<br />

Ai-12<br />

k -1<br />

r ( t , x ) = ∫ r ( t , x) dx h ∀ i = 0, , n -1, ∀ k = 1, 2, , m.<br />

(21)<br />

So, we get approximate discrete solution<br />

the conservation law in discrete form.<br />

at each time-level First we prove<br />

Let a discrete function is given, and we construct piecewise linear interpolant<br />

h<br />

rinit ( x) ∀ x∈<br />

[0,1) with period 1.<br />

Theorem 2. For any initial condition<br />

satisfies the equality:<br />

the approximate solution (17)–(20)<br />

1 1<br />

h h<br />

r<br />

0<br />

k = r<br />

0<br />

init<br />

∫ ( t , x) dx ∫ ( x) dx.<br />

(22)<br />

Proof. We prove this equality by induction in k. For k = 0 this inequality is valid because of initial condition. Suppose that<br />

estimate (21) is valid for some k -1≥ 0 and prove it for k. Indeed, because of (18) and (20) we get<br />

1<br />

∫ ∑ ∫ ∑ ∫ ∫<br />

0<br />

k-1 k-1<br />

xi 12 Ai 12 A<br />

h + h + h n-12<br />

h<br />

k = k = k-1 1 k 1<br />

x<br />

k k 1<br />

i 12 A<br />

- = -<br />

i 12 A<br />

-<br />

- - -12<br />

0≤≤ i n-1 0≤≤ i n-1<br />

r ( t , x) dx r ( t , x) dx r ( t , x) dx r ( t , x) dx.<br />

And due to periodicity of function<br />

k-1<br />

An-12<br />

k-1<br />

A-12<br />

1<br />

h h<br />

k-1 =<br />

0<br />

k-1<br />

∫ ∫<br />

r ( t , x) dx r ( t , x) dx.<br />

Thus we prove<br />

(16)<br />

(17)<br />

(20)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!